[image:]ISO/IEC JTC 1/SC 29/WG 03 NN03030223

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document
Title:	Revised text of ISO/IEC 14496-22:2019 CDAM 2 Extending color font functionality and other updatesText of ISO/IEC 14496-22:2019 CDAM 2 Extending color font functionality and other updates
Status:	Approved
Date of document:	2021-07-262021-06-11
Source:	ISO/IEC JTC 1/SC 29/WG 03
No. of pages:	88 (with cover page)
Email of Convenor:	young.L @ samsung . com
Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 03 MPEG SYSTEMS
ISO/IEC JTC 1/SC 29/WG 03 NN03030223
July 2021June 2021, Virtual
	Title
	Revised text of ISO/IEC 14496-22:2019 CDAM 2 Extending color font functionality and other updatesText of ISO/IEC 14496-22:2019 CDAM 2 Extending color font functionality and other updates

	Source
	WG 03, MPEG Systems

	Status
	Approved

	Serial Number
	2055720285

ISO/IEC 14496-22:2019(4th edition)_AMD2
ISO JTC1/SC 29/WG 3
[bookmark: CVP_Secretariat_Loca]Secretariat: XXXX
Information technology — Coding of audio-visual objects —
Part 22: Open Font Format

CD stage

Warning for WDs and CDs
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
Contents
Foreword	vi
Introduction	vii
1	Scope	1
2	Amended content	1

[bookmark: _Toc353342667][bookmark: _Toc61540084]Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Joint Technical Committee 1 ISO/IEC JTC1, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
This amendment replaces / updates certain clauses of the 4th edition ISO/IEC 14496-22:2019 “Open Font Format” (OFF), which has been technically revised.
The main changes compared to the previous edition are as follows:
—	Updates to COLR table formats.
—	Updates to Item Variation Store.
—	Revisions of Script and Language System tags, and other updates.
A list of all parts in the ISO/IEC 14496 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
[bookmark: _Toc353342668][bookmark: _Toc61540085]Introduction
The International Organization for Standardization (ISO) [and/or] International Electrotechnical Commission (IEC) draw[s] attention to the fact that it is claimed that compliance with this document may involve the use of a patent.
ISO [and/or] IEC take[s] no position concerning the evidence, validity and scope of this patent right.
The holder of this patent right has assured ISO [and/or] IEC that he/she is willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with ISO [and/or] IEC. Information may be obtained from the patent database available at www.iso.org/patents.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those in the patent database. ISO [and/or] IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 14496-22:2019(4th edition) AMD2
ISO/IEC 14496-22:2019(4th edition) AMD2

ii	© ISO 2021 – All rights reserved
© ISO 2021 – All rights reserved	iii
Information technology — Coding of audio-visual objects — Part 22: Open Font Format
1 [bookmark: _Toc353342669][bookmark: _Toc61540086]Scope
This amendment extends the color font capabilities to implement feature-rich variable color fonts with multiple layers supporting complex design using advanced graphical primitives. It also introduces technical changes, technical clarifications and updates, to other parts of the standard.
2 [bookmark: _Toc61540087]Amended content
4.3
Replace the table defining data types with the following:
	Data Type
	Description

	uint8
	8-bit unsigned integer.

	int8
	8-bit signed integer.

	uint16
	16-bit unsigned integer.

	int16
	16-bit signed integer.

	uint24
	24-bit unsigned integer.

	uint32
	32-bit unsigned integer.

	int32
	32-bit signed integer.

	Fixed
	32-bit signed fixed-point number (16.16)

	FWORD
	int16 that describes a quantity in font design units.

	UFWORD
	uint16 that describes a quantity in font design units.

	F2DOT14
	16-bit signed fixed number with the low 14 bits of fraction (2.14).

	LONGDATETIME
	Date and time represented in number of seconds since 12:00 midnight, January 1, 1904. The value is represented as a signed 64-bit integer.

	Tag
	Array of four uint8s (length = 32 bits) used to identify a table, design-variation axis, script, language system, feature, or baseline

	Offset16
	Short offset to a table, same as uint16, NULL offset = 0x0000

	Offset24
	24-bit offset to a table, same as uint24, NULL offset = 0x000000

	Offset32
	Long offset to a table, same as uint32, NULL offset = 0x00000000

[bookmark: _Toc113087997][bookmark: _Toc113348401][bookmark: _Toc224979127][bookmark: _Toc518658266][bookmark: _Toc521662512][bookmark: _Toc534817048][bookmark: _Toc534817632]5.7.1 “DSIG – Digital signature table”
Replace the content of the entire subclause with the following:
The DSIG table contains the digital signature of the OFF font. Signature formats are widely documented and rely on a key pair architecture. Software developers, or publishers posting material on the Internet, create signatures using a private key. Operating systems or applications authenticate the signature using a public key.
The W3C and major software and operating system developers have specified security standards that describe signature formats, specify secure collections of web objects, and recommend authentication architecture. OFF fonts with signatures will support these standards.
OFF fonts offer many security features:
· Operating systems and browsing applications can identify the source and integrity of font files before using them,
· Font developers can specify embedding restrictions in OFF fonts, and these restrictions cannot be altered in a font signed by the developer.
The enforcement of signatures is an administrative policy that may be supported by the host environment in which fonts are used. Systems may restrict use of unsigned fonts, or may allow policy to be controlled by a system administrator.
Anyone can obtain identity certificates and encryption keys from a certifying agency, such as Verisign or GTE's Cybertrust, free or at a very low cost.
The DSIG table is organized as follows. The first portion of the table is the header.
DSIG Header
	Type
	Name
	Description

	uint32
	version
	Version number of the DSIG table (0x00000001)

	uint16
	numSignatures
	Number of signatures in the table

	uint16
	flags
	Must be set to 0x0001

	SignatureRecord
	signatureRecords[numSignatures]
	Array of signature records

The version of the DSIG table is expressed as a uint32, beginning at 0. The version of the DSIG table currently used is version 1 (0x00000001).
Permission bit 0 allows a party signing the font to prevent any other parties from also signing the font (counter-signatures). If this bit is set to zero (0) the font may have a signature applied over the existing digital signature(s). A party who wants to ensure that their signature is the last signature can set this bit.
The DSIG header has an array of signature records that specify the format and offset of signature blocks.
SignatureRecord
	Type
	Name
	Description

	uint32
	format
	Format of the signature

	uint32
	length
	Length of signature in bytes

	Offset32
	signatureBlockOffset
	Offset to the signature block from the beginning of the table

Signatures are contained in one or more signature blocks. Signature blocks may have various formats; currently one format is defined. The format identifier specifies both the format of the signature block, as well as the hashing algorithm used to create and authenticate the signature.
Signature Block Format 1
	Type
	Name
	Description

	uint16
	reserved1
	Reserved for future use; set to zero.

	uint16
	reserved2
	Reserved for future use; set to zero.

	uint32
	signatureLength
	Length (in bytes) of the PKCS#7 packet in the signature field.

	uint8
	signature[signatureLength]
	PKCS#7 packet

For more information about PKCS#7 signatures see [10].
For more information about counter-signatures, see [11].
Format 1: For whole fonts, with either TrueType outlines and/or CFF data
PKCS#7 or PKCS#9. The signed content digest is created as follows:
1. If there is an existing DSIG table in the font:
a. Remove the DSIG table from font.
b. Remove the DSIG table entry from the Table Directory.
c. Adjust table offsets as necessary.
d. Recalculate the checksumAdjustment in the ‘head’ table.
2. Hash the revised font data using a secure one-way hash (such as MD5) to create the content digest.
3. Create the PKCS#7 signature block using the content digest.
4. Create a new DSIG table containing the signature block.
5. Add the DSIG table to the font, adjusting table offsets as necessary.
6. Add a DSIG table entry to the Table Directory.
7. Recalculate the checksumAdjustment in the ‘head’ table.
Validation of a signature in a font is done by repeating steps 1 – 4 in an in-memory copy of the font file. Note that changing the checksumAdjustment in the last step does not break the signature because verification is done on an in-memory copy with these changes.
Prior to signing a font file, ensure that all the following attributes are true:
· The magic number in the ‘head’ table is correct.
· Given the numTables value in the Table Directory, the other values in the Table Directory are consistent.
· The table records in the Table Directory are ordered alphabetically by the table tags, and there are no duplicate tags.
· The offset of each table is a multiple of 4. (That is, tables are long word aligned.)
· The first actual table in the file comes immediately after the directory of tables.
· If the tables are sorted by offset, then for all tables i (where index 0 means the table with the smallest offset), Offset[i] + Length[i] <= Offset[i+1] and Offset[i] + Length[i] >= Offset[i+1] - 3. In other words, the tables do not overlap, and there are at most 3 bytes of padding between tables.
· The pad bytes between tables are all zeros.
· The offset of the last table in the file plus its length is not greater than the size of the file.
· The checksums of all tables are correct.
· The ‘head’ table's checksumAdjustment field is correct.
Signatures for Font Collections
The DSIG table for a Font Collection (TTC) must be the last table in the TTC file. The offset to the table is put in the TTCHeader (version 2). Signatures of TTC files are expected to be Format 1 signatures.
The signature of a TTC file applies to the entire file, not to the individual fonts contained within the TTC. Signing the TTC file ensures that other contents are not added to the TTC.
Individual fonts included in a font collection should not be individually signed as the process of making the TTC could invalidate the signature on the font.
When DSIG table is created for a collection file, the steps given above are used, with these revisions:
· In step 1: if there is an existing DSIG table referenced in a version 2.0 TTC header, the DSIG table is removed, and the DSIG fields in the header is set to NULL. No recalculation of a checksumAdjustment is required.
· In steps 6 and 7: the DSIG table is added to the file, not to any individual font within the collection. A version 2.0 TTC header is required, with the DSIG fields in the header set to reference the DSIG table.
· Step 8 is not applicable.
See the TTC Header description (subclause 4.6.3) for related information.

5.7.11
Replace the content of clause 5.7.11 with the following:
The COLR table adds support for multi-colored glyphs in a manner that integrates with the rasterizers of existing text engines and that is designed to be easy to support with current OpenType font files.
The COLR table defines color presentations for glyphs. The color presentation of a glyph is specified as a graphic composition using other glyphs, such as a layered arrangement of glyphs, each with a different color. The term “color glyph” is used informally to refer to such a graphic composition defined in the COLR table; and the term “base glyph” is used to refer to a glyph for which a color glyph is provided. Processing of the COLR table is done on glyph sequences after text layout processing is completed and prior to final presentation of glyphs. Typically, a base glyph is a glyph that may occur in a sequence that results from the text layout process. In some cases, a base glyph may be a virtual glyph defined within this table as a re-usable color composition.
For example, the Unicode character U+1F600 is the grinning face emoji. Suppose in an emoji font the ‘cmap’ table maps U+1F600 to glyph ID 718. Assuming no glyph substitutions, glyph ID 718 would be considered the base glyph. Suppose the COLR table has data describing a color presentation for this using a layered arrangement of other glyphs with different colors assigned: that description and its presentation result would be considered the corresponding color glyph.
Two versions of the COLR table are defined.
Version 0 allows for a simple composition of colored elements: a linear sequence of glyphs that are stacked vertically as layers in bottom-up z-order. Each layer combines a glyph outline from the ‘glyf’, CFF or CFF2 table (referenced by glyph ID) with a solid color fill. These capabilities are sufficient to define color glyphs such as those illustrated in figure 5.6.
[image: images/colr_v0_emoji_sample.png]
Figure 5.6 Examples of the graphic capabilities of COLR version 0

Version 1 supports additional graphic capabilities. In addition to solid colors, gradient fills can be used, as well as more complex fills using other graphic operations, including affine transformations and various blending modes. Version 1 capabilities allow for color glyphs such as those illustrated in figure 5.7:
[image: images/colr_v1_emoji_sample.png]
Figure 5.7 Examples of the graphic capabilities of COLR version 1
Version 1 also extends capabilities in variable fonts. A COLR version 0 table can be used in variable fonts with glyph outlines being variable, but no other aspect of the color composition being variable. In version 1, all of the new constructs for which it could be relevant have been designed to be variable; for example, the placement of color stops in a gradient, or the alpha values applied to colors. The graphic capabilities supported in version 0 and in version 1 are described in more detail below.
The COLR table is used in combination with the CPAL table (5.7.12): all color values are specified as entries in color palettes defined in the CPAL table. If the COLR table is present in a font but no CPAL table exists, then the COLR table is ignored.
Add the new clause 5.7.11.1 “Graphic compositions” with additional sub clauses containing the following text:
5.7.11.1 Graphic compositions
The graphic compositions in a color glyph definition use a set of 2D graphic concepts and constructs:
· Shapes (or geometries)
· Fills (or shadings)
· Layering—a z-order—of elements
· Composition and blending modes—different ways that the content of a layer is combined with the content of layers above or below it
· Affine transformations
For both version 0 and version 1, shapes are obtained from glyph outlines in the ‘glyf’, ‘CFF’ or CFF2 table, referenced by glyph ID. Colors used in fills are obtained from the CPAL table.
The simplest color glyphs use just a few of the concepts above: shapes, solid color fills, and layering. This is the set of capabilities provided by version 0 of the COLR table. In version 0, a base glyph record specifies the color glyph for a given base glyph as a sequence of layers. Each layer is specified in a layer record and has a shape (a glyph ID) and a solid color fill (a CPAL palette entry). The filled shapes in the layer stack are composed using only alpha blending.
Figure 5.8 illustrates the version 0 capabilities: three shapes are in a layered stack: a blue square in the bottom layer, an opaque green circle in the next layer, and a red triangle with some transparency in the top layer.
[image: images/colr_v0_layering.png]
Figure 5.8 Basic graphic capabilities of COLR version 0
The basic concepts also apply to color glyphs defined using the version 1 formats: shapes have fills and can be arranged in layers. But the additional formats of version 1 support much richer capabilities. In a version 1 color glyph, graphic constructs and capabilities are represented primarily in Paint tables, which are linked together in a directed, acyclic graph. Several different Paint formats are defined, each describing a particular type of graphic operation:
· A PaintColrLayers table provides a layering structure used for creating a color glyph from layered elements. A PaintColrLayers table can be used at the root of the graph, providing a base layering structure for the entire color glyph definition. A PaintColrLayers table can also be nested within the graph, providing a set of layers to define some graphic sub-component within the color glyph.
· The PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, and PaintVarSweepGradient tables provide basic fills, using color entries from the CPAL table.
· The PaintGlyph table provides glyph outlines as the basic shapes.
· The PaintTransform and PaintVarTransform tables are used to apply an affine transformation matrix to a sub-graph of paint tables, and the graphic operations they represent. Several Paint formats are also provided for specific transformation types: translate, scale, rotate, or skew, with additional variants of these formats for variations and other optionsThe PaintTranslate, PaintVarTranslate, PaintRotate, PaintVarRotate, PaintSkew, and PaintVarSkew tables support specific transformations.
· The PaintComposite table supports alternate compositing and blending modes for two sub-graphs.
· The PaintColrGlyph table allows a color glyph definition, referenced by a base glyph ID, to be re-used as a sub-graph within multiple color glyphs.
NOTE	Some paint formats come in Paint* and PaintVar* pairs. In these cases, the latter format supports variations in variable fonts, while the former provides a more compact representation for the same graphic capability but without variation capability.
In a simple color glyph description, a PaintGlyph table might be linked to a PaintSolid table, for example, representing a glyph outline filled using a basic solid color fill. But the PaintGlyph table could instead be linked to a much more complex sub-graph of Paint tables, representing a shape that gets filled using the more-complex set of operations described by the sub-graph of Paint tables.
The graphic capabilities are described in more detail in 5.7.11.1.1 – 5.7.11.1.9. The formats used for each are specified 5.7.11.2.
5.7.11.1.1 Colors and solid color fills
All colors are specified as a base zero index into CPAL (5.7.12) palette entries. A font can define alternate palettes in its CPAL table; it is up to the application to determine which palette is used. A palette entry index value of 0xFFFF is a special case indicating that the text foreground color (defined by the application) should be used, and shall not be treated as an actual index into the CPAL ColorRecord array.
The CPAL color data includes alpha information, as well as RGB values. In the COLR version 0 formats, a color reference is made in a LayerRecord as a palette entry index alone. In the formats added for COLR version 1, color references include a palette entry index and a separate alpha value within the COLR structure for a solid color fill or gradient color stop (described below). Separation of alpha from palette entries in version 1 allows use of transparency in a color glyph definition independent of the choice of palette. The alpha value in the COLR structure is multiplied into the alpha value given in the CPAL color entrya color reference is made in a color index record, which includes a palette entry index and a separate alpha value. Separation of alpha from palette entries in version 1 allows use of transparency in a color glyph definition independent of the choice of palette. The alpha value in the color index record is multiplied into the alpha value given in the CPAL color entry.
Two color index record formats are defined: ColorIndex, and VarColorIndex. The latter can be used in variable fonts to make the alpha value variable.
In version 1, a solid color fill is specified using a PaintVarSolid or PaintSolid table, with or without variation support, respectively. See 5.7.11.2.5.2 for format details.
See 5.7.11.1.3 for details on how fills are applied to a shape.
5.7.11.1.2 Gradients
COLR version 1 supports three types of gradients: linear gradients, radial gradients, and sweep gradients. For each type, non-variable and variable formats are defined. Each type of gradient is specified using a color line.
5.7.11.1.2.1 Color Lines
A color line is a function that maps real numbers to color values to define a one-dimensional gradation of colors, to be used in the definition of linear, radial, or sweep gradients. A color line is defined as a set of one or more color stops, each of which maps a particular real number to a specific color.
On its own, a color line has no positioning, orientation or size within a design grid. The definition of a linear, radial, or sweep gradient will reference a color line and map it onto the design grid by specifying positions in the design grid that correspond to the real values 0 and 1 in the color line. The specification for linear, radial and sweep gradients also include rules for where to draw interpolated colors of the color line, following from the placement of 0 and 1.
A color stop is defined by a real number, the stop offset, and a color. A color line is defined withshall have at least one color stop within the interval [0, 1]. Additional color stops can be specified within or outside the interval [0, 1]. (Stop offsets are represented using F2DOT14 values, therefore color stops can only be specified within the range [-2, 2). See 5.7.11.2.4 for format details.) If only one color stop is specified, that color is used for the entire color line; at least two color stops are needed to create color gradation.
Color gradation is defined over the interval from the first color stop with the minimum offset, through the successive color stops, to the last color stop with the maximum offset. Between numerically-adjacent color stops, color values are linearly interpolated. See Interpolation of Colors in 5.7.12 for requirements on how colors are interpolated.
Color values outside the defined interval are determined by the color line’s extend mode, described below. In this way, colors are defined for all stop offset values, from negative infinity to positive infinity.
For example, a gradient color line could be defined with two color stops at 0.2 and 1.5. The gradient color line is positioned in the design grid by aligning stop offsets 0 and 1 to design grid positions, as defined for each gradient type, using an extrapolated color of stop offset 0 at one position and an interpolated color of stop offset 1 at the other position. Colors for offsets between 0.5 2 and 1.5 are interpolated. Colors for offsets above 1.5 and below 0.2 are defined and determined by the color line’s extend mode, described below.
If there are multiple color stops defined for the same stop offset, the first one is used for computing color values on the color line below that stop offset, and the last one is used for computing color values at or above that stop offset. All other color stops for that stop offset are ignored.
While tThe color gradation is specified over apatterns outside the defined interval, the color line continues indefinitely outside that interval in both directions. The color pattern outside the defined interval is repeated according to are determined by the color line’s extend mode. Three extend modes are supported:
· Pad: outside the defined interval, the color of the closest color stop is used. Using a sequence of letters as an analogy, given a sequence “ABC”, it is extended to “…AA ABC CC…”.
· Repeat: The color line is repeated over repeated multiples of the defined interval. For example, if color stops are specified for a defined interval of [0.2, 0.71.5], then the pattern is repeated above the defined interval for intervals [0.7(1.5, 1.42.8], [1.4(2.8, 24.1], etc.; and also repeated below the defined interval for intervals [-0.71.1, 0.2],), [-12.4, -0.71.1],), etc. In each repeated interval, the first color is that of the farthest defined color stop. By analogy, given a sequence “ABC”, it is extended to “…ABC ABC ABC…”.
· Reflect: The color line is repeated over repeated intervals, as for the repeat mode. However, in each repeated interval, the ordering of color stops is the reverse of the adjacent interval. By analogy, given a sequence “ABC”, it is extended to “…ABC CBA ABC CBA ABC…”.
Figures 5.9 – 5.11 illustrate the different color line extend modes. The figures show the color line extended over a limited interval, but the extension is unbounded in either direction.
[image: images/colr_gradient_extend_pad.png]
Figure 5.9 Color gradation extended using pad mode
[image: images/colr_gradient_extend_repeat.png]
Figure 5.10 Color gradation extended using repeat mode
[image: images/colr_gradient_extend_reflect.png]
Figure 5.11 Color gradation extended using reflect mode
NOTE	The extend modes are the same as the spreadMethod attribute used for linear and radial gradients in the Scalable Vector Graphics (SVG) 1.1 (2nd Edition) specification.
When combining a color line with the geometry of a particular gradient definition, one might want to achieve a certain number of repetitions of the gradient pattern over a particular geometric range. Assuming that geometric range will correspond to placement of stop offsets 0 and 1, the following steps can be used:
· In order to get a certain number of repetitions of the gradient pattern (without reflection), divide 1 by the number of desired repetitions, use the result as the maximum stop offset for specified color stops, and set the extend mode to repeat.
· In order to get a certain number of repetitions of the reflected gradient pattern, divide 1 by two times the number of desired repetitions, use the result as the maximum stop offset for specified color stops, and set the extend mode to reflect.
NOTE	Special considerations apply to color line extend modes for sweep gradients. See 5.7.11.1.2.4 for details.
Color lines are specified using color line tables, which contain arrays of color stop records. Two color line table and two color stop record formats are defined:
· ColorLine table and ColorStop record
· VarColorLine table and VarColorStop record
The VarColorLine and VarColorStop formats can be used in variable fonts and allow for stop offsets and color alpha values to be variable. The VarColorStop record also uses the VarColorIndex record, allowing the alpha to be variable. The ColorLine and ColorStop formats provide a more compact representation when variation is not required. See 5.7.11.2.4 for format details.
5.7.11.1.2.2 Linear gradients
A linear gradient provides gradation of colors along a straight line. The gradient is defined by three points, p₀, p₁ and p₂, plus a color line. The color line is positioned in the design grid with stop offset 0 aligned to p₀ and stop offset 1.0 aligned to p₁. (The line passing through p₀ and p₁ will be referred to as line p₀p₁.) Colors at each position on line p₀p₁ are interpolated using the color line. For each position along line p₀p₁, the color at that position is projected on other either side of the line.
The additional point, p₂, is used to rotate the gradient orientation in the space on either side of the line p₀p₁. The line passing through points p₀ and p₂ (line p₀p₂) determines the direction in which colors are projected on either side of the color line. That is, for each position on line p₀p₁, the line that passes through that position on line p₀p₁ and that is parallel to line p₀p₂ will have the color for that position on line p₀p₁.
NOTE	For convenience, point p₂ can be referred to as the rotation point, and the vector from p₀ to p₂ can be referred to as the rotation vector. However, neither the magnitude of the vector nor the direction (from p₀ to p₂, versus from p₂ to p₀) has significance.
If either point p₁ or p₂ is the same as point p₀, the gradient is ill-formed and shall not be rendered.
If line p₀p₂ is parallel to line p₀p₁ (or near-parallel for an implementation-determined definition), then the gradient is ill-formed and shall not be rendered.
NOTE	An implementation can derive a single vector, from p₀ to a point p₃, by computing the orthogonal projection of the vector from p₀ to p₁ onto a line perpendicular to line p₀p₂ and passing through p₀ to obtain point p₃. The linear gradient defined using p₀, p₁ and p₂ as described above is functionally equivalent to a linear gradient defined by aligning stop offset 0 to p₀ and aligning stop offset 1.0 to p₃, with each color projecting on either side of that line in a perpendicular direction. This specification uses three points, p₀, p₁ and p₂, as that provides greater flexibility in controlling the placement and rotation of the gradient, as well as variations thereof.
Figures 5.12 – 5.14 illustrate linear gradients using the three different color line extend modes. Each figure illustrates linear gradients with two different rotation vectors. In each case, three color stops are specified: red at 0.0, yellow at 0.5, and blue at 1.0.
[image: images/colr_linear_gradients_pad.png]
Figure 5.12 Linear gradients with different rotations using the pad extend mode
[image: images/colr_linear_gradients_repeat.png]
Figure 5.13 Linear gradients with different rotations using the repeat extend mode
[image: images/colr_linear_gradients_reflect.png]
Figure 5.14 Linear gradients with different rotations using the reflect extend mode
NOTE	When a linear gradient is combined with a transformation (see 5.7.11.1.5), the appearance will be the same as if the gradient were defined using the transformed positions of points p₀, p₁ and p₂.
Linear gradients are specified using a PaintVarLinearGradient or PaintLinearGradient table, with or without variation support, respectively. See 5.7.11.2.5.3 for format details.
See 5.7.11.1.3 for details on how fills are applied to a shape.
5.7.11.1.2.3 Radial gradients
A radial gradient provides gradation of colors along a cylinder defined by two circles. The gradient is defined by circles with center c₀ and radius r₀, and with center c₁ and radius r₁, plus a color line. The color line aligns with the two circles by associating stop offset 0 with the first circle (with center c₀) and aligning stop offset 1.0 with the second circle (with center c₁).
NOTE	The term “radial gradient” is used in some contexts for more limited capabilities. In some contexts, the type of gradient defined here is referred to as a “two point conical” gradient.
The drawing algorithm for radial gradients follows the HTML WHATWG Canvas specification for createRadialGradient() [32], but adapted with alternate color line extend modes, as described in 5.7.11.1.2.1. Radial gradients shall be rendered with results that match the results produced by the following steps.
With circle center points c₀ and c₁ defined as c₀ = (x₀, y₀) and c₁ = (x₁, y₁):
1. If c₀ = c₁ and r₀ = r₁ then paint nothing and return.
1. For real values of ω: Let x(ω) = (x₁-x₀)ω + x₀ Let y(ω) = (y₁-y₀)ω + y₀ Let r(ω) = (r₁-r₀)ω + r₀ Let the color at ω be the color at position ω on the color line.
1. For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive infinity and ending with the value of ω nearest to negative infinity, draw the circular line with radius r(ω) centered at position (x(ω), y(ω)), with the color at ω, but only painting on the parts of the bitmap that have not yet been painted on in this step of the algorithm for earlier values of ω.
The algorithm provides results in various cases as follows:
· When the circles are identical, then nothing is painted.
· When both radii are 0 (r₀ = r₁ = 0), then r(ω) is always 0 and nothing is painted.
· If the centers of the circles are distinct, the radii of the circles are different, and neither circle is entirely contained within the radius of the other circle, then the resulting shape resembles a cone that is open to one side. The surface outside the cone is not painted. (See figures 5.15 – 5.17.)
· If the centers of the circles are distinct but the radii are the same, and neither circle is contained within the other, then the result will be a strip, similar to the flattened projection of a circular cylinder. The surface outside the strip is not painted. (See figures 5.18 – 5.20.)
· If the radii of the circles are different but one circle is entirely contained within the radius of the other circle, the gradient will radiate in all directions from the inner circle, and the entire surface will be painted. (See figures 5.24 – 5.26.)
Figures 5.15 – 5.17 illustrate radial gradients using the three different color line extend modes. The color line is defined with stops for the interval [0, 1]: red at 0.0, yellow at 0.5, and blue at 1.0. Note that the circles that define the gradient are not stroked as part of the gradient itself. Stroked circles have been overlaid in the figure to illustrate the color line and the region that is painted in relation to the two circles.
[image: images/colr_radial_gradients_pad.png]
Figure 5.15 Radial gradient using pad extend mode.
[image: images/colr_radial_gradients_repeat.png]
Figure 5.16 Radial gradient using repeat extend mode.
[image: images/colr_radial_gradients_reflect.png]
Figure 5.17 Radial gradient using reflect extend mode.
Figures 5.18 – 5.20 illustrate the case in which the circles have distinct centers but the same radii, and neither circle is contained within the other, giving the appearance of a strip. The color stops are as in the previous figures.
[image: images/colr_radial_gradients_strip_pad.png]
Figure 5.18 Radial gradient with same-size circles appearing as a strip, using pad extend mode.
[image: images/colr_radial_gradients_strip_repeat.png]
Figure 5.19 Radial gradient with same-size circles appearing as a strip, using repeat extend mode.
[image: images/colr_radial_gradients_strip_reflect.png]
Figure 5.20 Radial gradient with same-size circles appearing as a strip, using reflect extend mode.
Because the rendering algorithm progresses ω in a particular direction, from positive infinity to negative infinity, and because pixels are not re-painted as ω progresses, the appearance will be affected by which circle is considered circle 0 and which is circle 1. This is illustrated in figures 5.21 – 5.23. The gradient in figure 5.21 is the same as that in figure 5.15, using the pad extend mode. In this gradient, circle 0 is the small circle, on the left. In figure 5.22, the start and end circles are reversed: circle 0 is the large circle, on the right. The color line is kept the same, and so the red end starts at circle 0, now on the right. In figure 5.23, the order of stops in the color line is also reversed to put red on the left. The key difference to notice between the gradients in these figures is the way that colors are painted in the interior: when the two circles are not overlapping, the arcs of constant color bend in the same direction as the near side of circle 1.
NOTE	This difference does not exist if one circle is entirely contained within the other: in that case, the arcs of constant color are complete circles.
[image: images/colr_radial_gradients_direction_1.png]
Figure 5.21 Cone-shaped radial gradient with circle 0 on the left.
[image: images/colr_radial_gradients_direction_2.png]
Figure 5.22 Cone-shaped radial gradient with start and end circles swapped.
[image: images/colr_radial_gradients_direction_3.png]
Figure 5.23 Cone-shaped radial gradient with start and end circles swapped and color line reversed.
When one circle is contained within the other, the extension of the gradient beyond the larger circle will fill the entire surface. Colors in the areas inside the inner circle and outside the outer circle are determined by the extend mode. Figures 5.24 – 5.26 illustrate this for the different extend modes.
[image: images/colr_radial_gradients_circle_within_circle_pad.png]
Figure 5.24 Radial gradient with one circle contained within the other, pad extend mode.
[image: images/colr_radial_gradients_circle_within_circle_repeat.png]
Figure 5.25 Radial gradient with one circle contained within the other, repeat extend mode.
[image: images/colr_radial_gradients_circle_within_circle_reflect.png]
Figure 5.26 Radial gradient with one circle contained within the other, reflect extend mode.
NOTE	When a radial gradient is combined with a transformation (see 5.7.11.1.5), the appearance will be the same as if the geometry of the two circles were transformed and step 3 of the algorithm were performed by interpolating the shapes derived from the two transformed circles. For the condition r(ω) > 0, the pre-transformation values of r(ω) can be used.
NOTE	A scale transformation can flatten shapes to resemble lines. If a radial gradient is nested in the child sub-graph of a transformation that flattens the circles so that they are nearly lines, the centers could still be separated by some distance. In that case, the radial gradient would appear as a strip or a cone filled with a linear gradient.
If a radial gradient is nested in the sub-graph of a transformation that flattens the circles so that they form a single line (or nearly a line, for an implementation-determined definition), with both centers on that line, then the resulting gradient is degenerate and shall not be rendered.
NOTE	As seen in the figures above, the gradient fills the space when one circle is contained within the other, but not when neither circle is contained within the other. In a variable font, if the placement or radii of the circles vary, then a sharp transition can occur if the variation results in one circle being contained within the other for some instances but not for other instances. This transition will occur when the inner circle just touches the outer circle (i.e., they have exactly one point in common). In this case, the gradient will fill exactly one half of the space. This is illustrated in figure 5.27 using the pad extend mode.
[image: images/colr_radial_gradients_inner_circle_touching_outer_pad.png]
Figure 5.27 Radial gradient with inner circle just touching the outer circle, pad extend mode
When the repeat or reflect extend modes are used, having the two circles in very close proximity results in very high spatial-frequency transitions that can lead to Moiré patterns or other display artifacts. This is illustrated in figure 5.28, which shows the display result, for one particular rendering context, of a radial gradient defined using nearly-identical circles and the reflect extend mode.
[image: images/colr_radial_gradients_interference_patterns_reflect.png]
Figure 5.28 Radial gradient defined using nearly-identical circles, showing interference patterns
The artifacts seen can be affected by a combination of several factors, such as image scaling, sub-pixel rendering, display technology, and limitations in software implementation or display capabilities. For this reason, the appearance can be very different in different situations. Font designers should exercise caution if the circles are in close proximity (either in a static design or for some variable font instances), and should not rely on these display artifacts to obtain a particular pattern.
Radial gradients are specified using a PaintVarRadialGradient or PaintRadialGradient table, with or without variation support, respectively. See 5.7.11.2.5.4 for format details.
See 5.7.11.1.3 for details on how fills are applied to a shape.
5.7.11.1.2.4 Sweep gradients
A sweep gradient provides a gradation of colors that sweep around a center point. For a given color on a color line, that color projects as a ray from the center point in a given direction. This is illustrated in figure 5.29.
NOTE	The following figures illustrate sweep gradients clipped to a circular region. Sweep gradients are not bounded, however, and fill the entire space.
[image: images/colr_conic_gradient.png]
Figure 5.29 Sweep gradient
NOTE	In some contexts, this type of gradient is referred to as a “conic” gradient, or as an “angular” gradient.
A sweep gradient is defined by a center point, starting and ending angles, and a color line. The angles are expressed in counter-clockwise degrees from the direction of the positive x-axis on the design grid.
The color line is aligned to a circular arc around the center point, with arbitrary radius, with stop offset 0 aligned with the starting angle, and stop offset 1 aligned with the ending angle. The color line progresses from the start angle to the end angle in the counter-clockwise direction; for example, if the start and end angles are both 0°, then stop offset 0.1 is at 36° counter-clockwise from the direction of the positive x-axis. For each position along the circular arc, from start to end in the counter-clockwise direction, a ray from the center outward is painted with the color of the color line at the point where the ray passes through the arc.
The color line may be defined using color stops outside the range [0, 1], and color stops outside the range [0, 1] can be used to interpolate color values within the range [0, 1], but only color values for the range [0, 1] are painted. If the specified color stops cover the entire [0, 1] range (or beyond), then the extend mode is not relevant and may be ignored. If the specified color stops do not cover the entire [0, 1] range, the extend mode is used to determine color values for the remainder of that range. For example, if a color line is specified with two color stops, red at stop offset 0.3 and yellow at stop offset 0.6, and the pad extend mode is specified, then the extend mode is used to derive color values from 0.0 to 0.3 (red), and from 0.6 to 1.0 (yellow).
Because a sweep gradient is defined using start and end angles, the gradient does not need to cover a full 360° sweep around the center. This is illustrated in figure 5.30:
[image: images/colr_conic_gradient_start_stop_angles.png]
Figure 5.30 A sweep gradient with start angle of 30° and an end angle of 150°
Start and end angle values can be outside the range [0, 360), but and are interpreted asconverted to values within that range by applying a modulus operation. For example, an angle -60° is treated the same as 300°; an angle 480° is treated the same as 120°. As a consequence, the [0, 1] range of the color line covers at most one full rotation around the center, never more.
If the starting and ending angle are the same, a sharp color transition can occur if the colors at stop offsets 0 and 1 are different. This is illustrated in figure 5.31, showing a gradient from red to yellow that starts and stops at 0°.:
[image: images/colr_conic_gradient_sharp_transition.png]
Figure 5.31 A sweep gradient with a sharp transition at the start/end angle 0°
To avoid such a sharp transition, the stop offsets 0 and 1 on the color line need to have the same color value. Figure 5.32 illustrates a sweep gradient that transitions from red at stop offset 0, to yellow at stop offset 0.5, and back to red at stop offset 1.0.:
[image: images/colr_conic_gradient_rotation-0.png]
Figure 5.32 A sweep gradient with a smooth transition at the start/end angle 0°
NOTE	When a sweep gradient is combined with a transformation (see 5.7.11.1.5), the appearance will be the same as if a circular arc of some non-zero radius were computed from the start and end angles; the center point and arc transformed; the color line aligned to the transformed arc; and then a gradient derived from the result, with rays from the transformed center point passing through the transformed color arc. When aligning the color line to the transformed arc, stop offset 0 would be aligned to the transformed point derived from the start angle, with stop offset 1 aligned to the transformed point derived from the end angle. Thus, a transform can result in the color line progressing in a clockwise rather than counter-clockwise direction.
Sweep gradients are specified using a PaintVarSweepGradient or PaintSweepGradient table, with or without variation support, respectively. See 5.7.11.2.5.5 for format details.
See 5.7.11.1.3 for details on how fills are applied to a shape.
5.7.11.1.3 Filling shapes
All basic shapes used in a color glyph are obtained from glyph outlines, referenced using a glyph ID. In a color glyph description, a PaintGlyph table is used to represent a basic shape.
NOTE	Shapes can also be derived using PaintGlyph tables in combination with other tables, such as PaintTransform (see 5.7.11.1.5) or PaintComposite (see 5.7.11.1.6).
The PaintGlyph table has a field for the glyph ID, plus an offset to a child paint table that is used as the fill for the shape. The glyph outline is not rendered; only the fill is rendered.
Any of the basic fill formats (PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, PaintVarSweepGradient) can be used as the child paint table. This is illustrated in figure 5.33: a PaintGlyph table has a glyph ID for an outline in the shape of a triangle, and it links to a child PaintLinearGradient table. The combination is used to represent a triangle filled with the linear gradient.
[image: images/colr_shape_gradient.png]
Figure 5.33 PaintGlyph and PaintLinearGradient tables used to fill a shape with a linear gradient.
The child of a PaintGlyph table is not, however, limited to one of the basic fill formats. Rather, the child can be the root of a sub-graph that describes some graphic composition that is used as a fill. Another way to describe the relationship between a PaintGlyph table and its child sub-graph is that the glyph outline specified by the PaintGlyph table defines a bounds, or clip region, that is applied to the fill composition defined by the child sub-graph.
To illustrate this, the example in figure 5.33 is extended in figure 5.34 so that a PaintGlyph table links to a second PaintGlyph that links to a PaintLinearGradient: the parent PaintGlyph will clip the filled shape described by the child sub-graph.
[image: images/colr_shape_shape_gradient.png]
Figure 5.34 A PaintGlyph table defines a clip region for the composition defined by its child sub-graph.
A PaintGlyph table on its own does not add content: if there is no child paint table, then the graph is not well formed. See 5.7.11.1.9 for details regarding well-formedness and validity of the graph.
5.7.11.1.4 Layering
Layering of visual elements was introduced above, in the introduction to 5.7.11.1. Both version 0 and version 1 support use of multiple layers, though in different ways.
For version 0, layers are fundamental: they are the sole way in which separate elements are composed into a color glyph. An array of LayerRecords is created, with each LayerRecord specifying a glyph ID and a CPAL entry (a shape and solid color fill). Each color glyph definition is a slice from that array (that is, a contiguous sub-sequence), specified in a BaseGlyphRecord for a particular base glyph. Within a given slice, the first record specifies the content of the bottom layer, and each subsequent record specifies content that overlays the preceding content (increasing z-order). A single array is used for defining all color glyphs. The LayerRecord slices for two base glyphs may overlap, though often will not overlap.
Figure 5.35 illustrates layers using version 0 formats.
[image: images/colr_layers_v0.png]
Figure 5.35 Version 0: Color glyphs are defined by slices of a layer records array.
When using version 1 formats, use of multiple layers is supported but is optional. For example, a simple glyph description need not use any layering, as illustrated in figure 5.36:
[image: colr_color_glyph_without_layers.png][image: images/colr_color_glyph_without_layers.png]
Figure 5.36 Complete color glyph definition without use of layers.
The version 1 formats define a color glyph as a directed, acyclic graph of paint tables, and the concept of layering corresponds roughly to the number of distinct leaf nodes in the graph. (See 5.7.11.1.9.) The basic fill formats (PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, PaintVarSweepGradient) do not have child paint tables and so can only be leaf nodes in the graph. Some paint tables, such as the PaintGlyph table, have only a single child, so can be used within a layer but do not provide any means of adding additional layers. Increasing the number of layers requires paint tables that have two or more children, creating a fork in the graph.
The version 1 formats include two paint formats that have two or more children, and so can increase the number of layers in the graph:
· The PaintComposite table allows two sub-graphs to be composed together using different compositing or blending modes.
· The PaintColrLayers table supports defining a sequence of several layers.
NOTE	The PaintColrGlyph table provides a means of incorporating the graph of one color glyph as a sub-graph in the definition of another color glyph. In this way, PaintColrGlyph provides an indirect means of introducing additional layers into a color glyph definition: forks in the resulting graph do not come from the PaintColrGlyph table itself, but can come from PaintColrLayers or PaintComposite tables that are nested in the incorporated sub-graph. See 5.7.11.1.7.3 for a description of the PaintColrGlyph table.
While the PaintComposite table only combines two sub-graphs, other PaintComposite tables can be nested to provide additional layers. The primary purpose of PaintComposite is to support compositing or blending modes other than simple alpha blending. The PaintComposite table is covered in more detail in 5.7.11.1.6. The remainder of this clause will focus on the PaintColrLayers table.
The PaintColrLayers table is used to define a bottom-up z-order sequence of layers. Similar to version 0, it defines a layer set as a slice in an array, but in this case the array is an array of offsets to paint tables, contained in a LayerV1ListLayerList table. Each referenced paint table is the root of a sub-graph of paint tables that specifies a graphic composition to be used as a layer. Within a given slice, the first offset provides the content for the bottom layer, and each subsequent offset provides content that overlays the preceding content. Definition of a layer set—a slice within the layer list—is given in a PaintColrLayers table.
Figure 5.37 illustrates the organizational relationship between PaintColrLayers tables, the LayerV1ListLayerList, and referenced paint tables that are roots of sub-graphs.
[image: colr_layers_v1.png][image: images/colr_layers_v1.png]
Figure 5.37 Version 1: PaintColrLayers tables specify slices within the LayerV1ListLayerList, providing a layering of content defined in sub-graphs.
NOTE	Paint table offsets in the LayerV1ListLayerList table are only used in conjunction with PaintColrLayers tables. If a paint table does not need to be referenced via a PaintColrLayers table, its offset does not need to be included in the LayerV1ListLayerList array.
A PaintColrLayers table can be used as the root of a color glyph definition, providing a base layering structure for the color glyph. In this usage, the PaintColrLayers table is referenced by a BaseGlyphV1RecordBaseGlyphPaintRecord, which specifies the root of the graph of a color glyph definition for a given base glyph. This is illustrated in figure 5.38.
[image: colr_PaintColrLayers_as_root.png][image: images/colr_PaintColrLayers_as_root.png]
Figure 5.38 PaintColrLayers table used as the root of a color glyph definition.
A PaintColrLayers table can also be nested more deeply within the graph, providing a layer structure to define some component within a larger color glyph definition. (See 5.7.11.1.7.2 for more information.) The ability to nest a PaintColrLayers table within a graph creates the potential to introduce a cycle within the graph, which would be invalid (see 5.7.11.1.9).
5.7.11.1.5 Transformations
A 2 × 3 transformation matrix can be used within a color glyph description to apply an affine transformation to a sub-graph in the color glyph description. Affine transformations supported by a matrix can be a combination of scale, skew, mirror, rotate, or translate. The transformation is applied to all nested paints in the child sub-graph.
A transformation matrix is specified using a PaintVarTransform or PaintTransform table, with or without variation support, respectively. See 5.7.11.2.5.8 for format details.
The effect of a transformation is illustrated in figure 5.39: a PaintTransform table is used to specify a rotation, and both the glyph outline and gradient in the sub-graph are rotated.
[image: /googlefonts/colr-gradients-spec/raw/main/images/colr_transform_glyph_gradient.png][image: images/colr_transform_glyph_gradient.png]
Figure 5.39 A rotation transformation rotates the fill content defined by the child sub-graph.
If the sub-graph of a transformation table contains another nested transformation table, then the second transformation also applies to its child sub-graph. For the sub-sub-graph, the two transformations are combined. To illustrate this, the example in figure 5.39 is extended in figure 5.40 by inserting a mirroring transformation between the PaintGlyph and PaintLinearGradient tables: the glyph outline is rotated as before, but the gradient is mirrored in its (pre-rotation) y-axis as well as being rotated. Notice that both visible elements—the shape and the gradient fill—are affected by the rotation, but only the gradient is affected by the mirroring.
[image: /googlefonts/colr-gradients-spec/raw/main/images/colr_transform_glyph_transform_gradient.png][image: images/colr_transform_glyph_transform_gradient.png]
Figure 5.40 Combined effects of a transformation nested within the child sub-graph of another transformation.
While the PaintTransform and PaintVarTransform tables support several types of transforms, additional paint formats are defined to support specific transformations:
· PaintTranslate and PaintVarTranslate and PaintTranslate support translation only, with or without or with variation support, respectively. See 5.7.11.2.5.9 for format details.
· PaintScale and PaintVarScale support scaling only, without or with variation support. These two formats scale relative to the origin, and allow for different scale factors in X and Y directions. PaintScaleAroundCenter, PaintVarScaleAroundCenter, PaintScaleUniform, PaintVarScaleUniform, PaintScaleUniformAroundCenter, and PaintVarScaleUniformAroundCenter support scaling relative to a different center, scaling uniformly in both X and Y directions, or bothPaintVarRotate and PaintRotate support rotation only, with or without variation support, respectively. See 5.7.11.2.5.10 for format details.
· PaintRotate and PaintVarRotate support rotation only, without or with variation support. These two formats rotate around the origin; the PaintRotateAroundCenter and PaintVarRotateAroundCenter formats support rotation around a different center. See 5.7.11.2.5.11 for format details.
· PaintSkew and PaintVarSkew support skew only, without or with variation support. These two formats skew using the origin as a center for the skew rotation; the PaintSkewAroundCenter and PaintVarSkewAroundCenter formats support skews using a different centerPaintVarSkew and PaintSkew support skew only, with or without variation support, respectively. See 5.7.11.2.5.11 12 for format details.
NOTE	Horizontal mirroring is done by scaling using a scale factor in the x direction of -1. Vertical mirroring is done by scaling with a -1 scale factor in the y direction.
When only one of these specific types of transformation is required, these formats provide a more compact representation than the PaintTransform or PaintVarTransform formats. Another significant difference of the rotation and skew formats is that the rotations and skews are specified as angles, in counter-clockwise degrees.
NOTE	Specifying the rotation or skew as an angle can have a significant benefit in variable fonts if an angle of skew or rotation needs to vary, since it is easier to implement variation of angles when specified directly rather than as matrix elements. This is because the matrix elements for a rotation or skew are the sine, cosine or tangent of the rotation angle, which do not change in linear proportion to the angle. To achieve a linear variation of rotation using matrix elements would require approximating the variation using multiple delta sets.
The rotations and skews specified using PaintRotate, PaintVarRotate, PaintSkew, or PaintVarSkew tables and their variants can also be represented as a matrix using a PaintTransform or PaintVarTransform table. If aThe behavior for the PaintRotate, PaintVarRotate, or PaintSkew, or PaintVarSkew table is used in combination with a PaintTransform or PaintVarTransform table, the combined behavior formats and their variants shall be the same as if the rotation or skew were represented using an equivalent matrix. See 5.7.11.2.5.10 11 for details regarding the matrix equivalent for a rotation expressed as an angle; and see 5.7.11.2.5.11 12 for similar details in relation to skews.
5.7.11.1.6 Compositing and blending
When a color glyph has overlapping content in two layers, the pixels in the two layers must be combined in some way. If the content in the top layer has full opacity, then normally the pixels from that layer are shown, occluding overlapping pixels from lower layers. If the top layer has some transparency (some portion has alpha less than 1.0), then blending of colors for overlapping pixels occurs by default. The default interaction between layers uses simple alpha compositing, as described in Compositing and Blending Level 1 [33].
A PaintComposite table can be used to get other compositing or blending effects. The PaintComposite table combines content defined by two sub-graphs: a source sub-graph; and a destination, or backdrop, sub-graph. First, the paint operations for the backdrop sub-graph are executed, then the drawing operations for the source sub-graph are executed and combined with backdrop using a specified compositing or blending mode. The available modes are given in the CompositionModes CompositeModes enumeration (see 5.7.11.2.5.1213). The effect and processing rule of each mode are specified in Compositing and Blending Level 1 [33].
The available modes fall into two general types: compositing modes, also referred to as “Porter-Duff” modes; and blending modes. In rough terms, the Porter-Duff modes determine how much effect pixels from the source and the backdrop each contribute in the result, while blending modes determine how color values for pixels from the source and backdrop are combined. These are illustrated with examples in figures 5.41 and 5.42: in each case, red and blue rectangles are the source and backdrop content.
Figure 5.41 shows the effect of a Porter-Duff mode, XOR, which has the effect that only non-overlapping pixels contribute to the result.
[image: images/colr_porter-duff_xor.png]
Figure 5.41 Two content elements combined using the Porter-Duff XOR mode.
Figure 5.42 shows the effect of a lighten blending mode, which has the effect that the R, G, and B color components for each pixel in the result is the greater of the R, G, and B values from corresponding pixels in the source and backdrop.
[image: images/colr_blend_lighten.png]
Figure 5.42 Two content elements combined using the lighten blending mode.
For complete details on each of the Porter-Duff and blending modes, see the Compositing and Blending Level 1 specification [33].
Figure 5.43 illustrates how the PaintComposite table is used in combination with content sub-graphs to implement an alternate compositing effect. The source sub-graph defines a green capital A; the backdrop sub-graph defines a black circle. The compositing mode used is Source Out, which has the effect that the source content punches out a hole in the backdrop. (For this mode, the fill color of the source is irrelevant; a black or yellow ″A″ would have the same effect.) A red rectangle is included as a lower layer to show that the backdrop has been punched out by the source, making that portion of the lower layer visible.
[image: colr_PaintCompositeGraph.png][image: images/colr_PaintCompositeGraph.png]
Figure 5.43 A color glyph using a PaintComposite table to punch out a shape from the fill of a circle.
NOTE	In figure 5.43, the ″A″ is filled with green to illustrate that the color of the fill has no affect for the Source Out composite mode. Because that is the case, the black or red PaintSolid could have been re-used instead of adding a separate PaintSolid table. See 5.7.11.1.7.1 for more information on re-use of paint tables for such situations.
Scalable Vector Graphics (SVG) 1.1 supports alpha channel masking using the <mask> element. The same effects can be implemented in COLR version 1 using a PaintComposite table by setting a pattern of alpha values in the source sub-graph and selecting the Source In composite mode. This is illustrated in figure 5.44.
[image: colr_gradient_mask.png][image: images/colr_gradient_mask.png]
Figure 5.44 An alpha mask implemented using a PaintComposite table and the Source In mode.
5.7.11.1.7 Re-usable components
Within a color font, many color glyphs might share components in common. For example, in emoji fonts, many different “smilies” or clock faces share a common background. This can be seen in figure 5.45, which shows color glyphs for three emoji clock faces.
[image: images/colr_clocks-12-1-2.png]
Figure 5.45 Emoji clock faces for 12 o’clock, 1 o’clock and 2 o’clock.
Several components are shared between these color glyphs: the entire face, with a gradient background and dots at the 3, 6, 9 and 12 positions; the minute hand pointing to the 12 position; and the circles in the center. Also, note that the four dots have the same shape and fill, and differ only in their position. In addition, the hour hands have the same shape and fill, and differ only in their orientation.
There are several ways in which elements of a color glyph description can be re-used:
· Reference to shared subtables
· Use of a PaintColrLayers table
· Use of a PaintColrGlyph table
The PaintColrLayers and PaintColrGlyph table formats create a potential for introducing cycles within the graph of a color glyph, which would be invalid (see 5.7.11.1.9).
5.7.11.1.7.1 Re-use by referencing shared subtables
Several of the paint table formats link to a child paint table using a forward offset within the file:
· PaintGlyph
· PaintComposite
· PaintTransform, PaintVarTransform
· PaintTranslate, PaintVarTranslate
· PaintScale, PaintVarScale, and the other variant scaling paint formats
· PaintRotate, PaintVarRotate, PaintRotateAroundCenter, PaintVarRotateAroundCenter
· PaintSkew, PaintVarSkew, PaintSkewAroundCenter, PaintVarSkewAroundCenter
A child subtable can be shared by several tables of these formats. For example, several PaintGlyph tables might link to the same PaintSolid table, or to the same node for a sub-graph describing a more complex fill. The only limitation is that child paint tables are referenced using a forward offset from the start of the referencing table, so a re-used paint table can only occur later in the file than any of the paint tables that use it.
The clock faces shown in figure 5.45 provide an example of how PaintRotate tables can be combined with re-use of a sub-graph. As noted above, the hour hands have the same shape and fill, but have a different orientation. The glyph outline could point to the 12 position, then in color glyph descriptions for other times, PaintRotate tables could link to the same glyph/fill sub-graph, re-using that component but rotated as needed.
This is illustrated in the figures 5.46 and 5.47. Figure 5.46 shows a sub-graph defining the hour hand, with upright orientation, using a PaintGlyph and a PaintSolid table. Example file offsets for the tables are indicated.
[image: images/colr_hour-hand-component.png]
Figure 5.46 A PaintGlyph and PaintSolid table are used to define the clock hour hand pointing to 12.
Figure 5.47 shows this sub-graph of paint tables being re-used, in some cases linked from PaintRotate tables that rotate the hour hand to point to different clock positions as needed. All of the paint tables that reference this sub-graph occur earlier in the file.
[image: images/colr_reuse-hour-hand-rotated.png]
Figure 5.47 The sub-graph for the hour hand is re-used with PaintRotate tables to point to different hours.
5.7.11.1.7.2 Re-use using PaintColrLayers
As described above (see 5.7.11.1.4), a PaintColrLayers table defines a set of paint sub-graphs arranged in bottom-up z-order layers, and an example was given of a PaintColrLayers table used as the root of a color glyph definition. A PaintColrLayers table can also be nested more deeply within the graph of a color glyph. One purpose for doing this is to reference a re-usable component defined as a contiguous set of layers in the LayersV1ListLayerList table.
This is readily explained using the clock faces as an example. As described above, each clock face shares several elements in common. Some of these form a contiguous set of layers. Suppose four sub-graphs for shared clock face elements are given in the LayerV1ListLayerList as contiguous layers, as shown in figure 5.48. (For brevity, the visual result for each sub-graph is shown, but not the paint details.)
[image: colr_clock_common.png][image: images/colr_clock_common.png]
Figure 5.48 Common clock face elements given as a slice within the LayerV1ListLayerList table.
A PaintColrLayers table can reference any contiguous slice of layers in the LayerV1ListLayerList table. Thus, the set of layers shown in figure 5.48 can be referenced by PaintColrLayers tables anywhere in the graph of any color glyph. In this way, this set of layers can be re-used in multiple clock face color glyph definitions.
This is illustrated in figure 5.49: The color glyph definition for the one o’clock emoji has a PaintColrLayers table as its root, referencing a slice of three layers in the LayerV1ListLayerList table. The upper two layers are the hour hand, which is specific to this color glyph; and the cap over the pivot for the minute and hour hands, which is common to other clock emoji but in a layer that is not contiguous with other common layers. The bottom layer of these three layers is the composition for all the remaining common layers. It is represented using a nested PaintColrLayers table that references the slice within the LayerV1ListLayerList for the common clock face elements shown in figure 5.48.
[image: colr_reuse_clock-face_PaintColrLayers.png][image: images/colr_reuse_clock-face_PaintColrLayers.png]
Figure 5.49 A PaintColrLayers table is used to reference a set of layers that define a shared clock face composition.
The color glyphs for other clock face emoji could be structured in exactly the same way, using a nested PaintColrLayers table to re-use the layer composition of the common clock face elements.
5.7.11.1.7.3 Re-use using PaintColrGlyph
A third way to re-use components in color glyph definitions is to use a nested PaintColrGlyph table. This format references a base glyph ID, which is used to access a corresponding BaseGlyphV1RecordBaseGlyphPaintRecord. That record will provide the offset of a paint table that is the root of a graph for a color glyph definition. That graph can potentially be used as an independent color glyph, but it can also define a shared composition that gets re-used in multiple color glyphs. Each time the shared composition is to be re-used, it is referenced by its base glyph ID using a PaintColrGlyph table. The graph of the referenced color glyph is thereby incorporated into the graph of the PaintColrGlyph table as its child sub-graph.
The glyph ID used may be that for a glyph outline, if there is an appropriate glyph outline that corresponds to this composition. But the glyph ID may also be greater than the last glyph ID used for outlines—that is, greater than or equal to the numGlyphs value in the ‘maxp’ table (5.2.6). Such virtual base glyph IDs in the COLR table are only used within a PaintColrGlyph table, and are not related to glyph IDs used in any other tables.
When a PaintColrGlyph table is used, a BaseGlyphV1RecordBaseGlyphPaintRecord with the specified glyph ID is expected. If no BaseGlyphV1RecordBaseGlyphPaintRecord with that glyph ID is found, the color glyph is not well formed. See 5.7.11.1.9 for details regarding well-formedness and validity of the graph.
The example from 5.7.11.1.7.2 is modified to illustrate use of a PaintColrGlyph table. In figure 5.50, a PaintColrLayers table references a slice within the LayerV1ListLayerList that defines the shared component. Now, however, this PaintColrLayers table is treated as the root of a color glyph definition for base glyph ID 63163. The color glyph for the one o’clock emoji is defined with three layers, as before, but now the bottom layer uses a PaintColrGlyph table that references the color glyph definition for glyph ID 63163.
[image: colr_reuse_clock-face_PaintColrGlyph.png][image: images/colr_reuse_clock-face_PaintColrGlyph.png]
Figure 5.50 A PaintColrGlyph table is used to reference the shared clock face composition via a glyph ID.
While the PaintColrGlyph and PaintColrLayers tables are similar in being able to reference a layer set as a re-usable component, they could be handled differently in implementations. In particular, an implementation could process and cache the result of the color glyph description for a given base glyph ID. In that case, subsequent references to that base glyph ID using a PaintColrGlyph table would not require the corresponding graph of paint tables to be re-processed. As a result, using a PaintColrGlyph for re-used graphic components could provide performance benefits.
5.7.11.1.8 Glyph metrics and boundedness
5.7.11.1.8.1 Metrics for color glyphs using version 0 formats
For color glyphs using version 0 formats, the advance width of glyphs used for each layer shall be the same as the advance width of the base glyph. If the font has vertical metrics, the glyphs used for each layer shall also have the same advance height and vertical Y origin as the base glyph.
5.7.11.1.8.2 Metrics and boundedness of color glyphs using version 1 formats
For color glyphs using version 1 formats, the advance width of the base glyph shall be used as the advance width for the color glyph. If the font has vertical metrics, the advance height and vertical Y origin of the base glyph shall be used for the color glyph. The advance width and height of glyphs referenced by PaintGlyph tables are not required to be the same as that of the base glyph and are ignored.
The bounding box of the base-glyph contours is used as the bounding box of the color glyph. A ‘glyf’ entry with two points at diagonal extrema is sufficient to define the bounding box.
NOTE	The bounding box of the base glyph can be used to allocate a drawing surface without needing to traverse the graph of the color glyph definition.
A valid color glyph definition shall define a bounded region—that is, it shall paint within a region for which a finite bounding box could be defined. A clip box can be specified to set overall bounds for a color glyph (see below). Otherwise, boundedness is determined by the graph of paint tables that describe the color glyph content. The different paint formats have different boundedness characteristicsThe different paint formats have different boundedness characteristics:
· PaintGlyph is inherently bounded.
· PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, and PaintVarSweepGradient are inherently unbounded.
· PaintColrLayers is bounded if and only if all referenced sub-graphs are bounded.
· PaintColrGlyph is bounded if and only if the color glyph definition for the referenced base glyph ID is bounded.
· Paint formats for transformations (PaintTransform, PaintVarTransform, PaintTranslate, PaintVarTranslate, PaintRotate, PaintVarRotate, PaintSkew, and PaintVarSkewPaintScale, etc.) are bounded if and only if the referenced sub-graph is bounded.
· PaintComposite is either bounded or unbounded, according to the composite mode used and the boundedness of the referenced sub-graphs. See 5.7.11.2.5.12 13 for details.
A ClipBox table (5.7.11.2.3) may be associated with a color glyph to define overall bounds for the color glyph. The clip box may vary in a variable font. If a clip box is provided for a color glyph, the color glyph is bounded, and no inspection of the Paint graph is required to determine boundedness. If no clip box is defined for a color glyph, however, applications shall confirm that the color glyph definition is bounded, and shall not render the color glyph if the defining graph is not boundedApplications shall confirm that a color glyph definition is bounded, and shall not render a color glyph if the defining graph is not bounded.
NOTE	If present, the clip box for a color glyph can be used to allocate a drawing surface without needing to traverse the graph of the color glyph definition.
NOTE	If no ClipBox table is present but a bounding box is required by the implementation, it can be computed for a given color glyph by traversing the graph of Paint tables that defines that color glyph.
To ensure that rendering implementations do not clip any part of a color glyph, the bounding clip box of the base glyph needs to be large enough to encompass the entire color glyph composition. In a variable font, glyph outlines can vary, but transformations in a color glyph description can also vary, affecting the portions of the design grid to be painted. For example, a filled rectangle that is wide but not tall for one variation instance can be variably rotated to be tall but not wide for other instances. The bounding clip box of the base glyph either should be large enough to encompass the color glyph for all instances, or should itself vary such that each instance bounding of the clip box encompasses the instance color glyph.
5.7.11.1.9 Color glyphs as a directed acyclic graph
When using version 1 formats, a color glyph is defined by a directed, acyclic graph of linked paint tables. For each BaseGlyphV1RecordBaseGlyphPaintRecord, the paint table referenced by that record is the root of a graph defining a color glyph composition.
The graph for a given color glyph is made up of all paint tables reachable from the BaseGlyphV1RecordBaseGlyphPaintRecord. The BaseGlyphV1RecordBaseGlyphPaintRecord and several paint table formats use direct links; that is, they include a forward offset to a paint subtable. Two paint formats make indirect links:
· A PaintColrLayers table references a slice of offsets within the LayerV1ListLayerList. The paint tables referenced by those offsets are considered to be linked within the graph as children of the PaintColrLayers table.
· A PaintColrGlyph table references a base glyph ID, for which a corresponding BaseGlyphV1RecordBaseGlyphPaintRecord is expected. That record points to the root of a graph that is a complete color glyph definition on its own. But when referenced in this way by a PaintColrGlyph table, that entire graph is considered to be a child sub-graph of the PaintColrGlyph table, and a continuation of the graph of which the PaintColrGlyph table is a part.
The graph for a color glyph is a combination of paint tables using any of the paint table formats. The simplest color glyph definition would consist of a PaintGlyph table linked to a basic fill table (PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, PaintVarSweepGradient). But the graph can be arbitrarily complex, with an arbitrary depth of paint nodes (to the limits inherent in the formats).
The graph can define a visual element in a single layer, or many elements in many layers. The concept of layers, as distinct visual elements stacked in a z-order, is not precisely defined in relation to the complexity of the graph. Each separate visual element requires a leaf node, but nodes in the graph, including leaf nodes, can be re-used (see 5.7.11.1.7). Also, each separate visual element requires a fork in the graph, and a separate root-to-leaf path, but not all paths necessarily result in a distinct visual element. For example, a gradient mask effect can be created with a gradient with gradation of alpha values, and then using that as the source of a PaintComposite table with the Source In compositing mode. In that case, the leaf has a visual affect but does not result in a distinct visual element. This was illustrated in figure 5.44, repeated here as figure 5.51: the PaintLinearGradient is a leaf node in the graph and creates a masking effect but does not add a distinct visual element.
[image: colr_gradient_mask.png][image: images/colr_gradient_mask.png]
Figure 5.51 Graph with a leaf node that isn’t a distinct visual element.
Thus, the generalization that can be made regarding the relationship between the number of layers and the nature of the graph is that the number of distinct root-to-leaf paths will be greater than or equal to the number of layers.
The following are necessary for the graph to be well-formed and valid:
· All subtable links shall satisfy the following criteria:
· Forward offsets are within the COLR table bounds.
· If a PaintColrLayers table is present, then a LayersV1ListLayerList is also present, and the referenced slice is within the length of the LayersV1ListLayerList.
· If a PaintColrGlyph table is present, there is a BaseGlyphV1RecordBaseGlyphPaintRecord for the referenced base glyph ID.
· The graph shall be acyclic.
NOTE	These constraints imply that all leaf nodes will be one of PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, or PaintVarSweepGradient.
For the graph to be acyclic, no paint table shall have any child or descendent paint table that is also its parent or ancestor within the graph. In particular, because the PaintColrLayers and PaintColrGlyph tables use indirect child references rather than forward offsets, they provide a possibility for introducing cycles. Applications should track paint tables within a path in the graph, checking whether any paint table was already encountered within that path. The following pseudo-code algorithm can be used:
 // called initially with the root paint and an empty set pathPaints
 function paintIsAcyclic(paint, pathPaints)
 if paint is in pathPaints
 return false // cycle detected
 add paint to pathPaints
 for each childPaint referenced by paint as a child subtable
 call paintIsAcyclic(childPaint, pathPaints)
 remove paint from pathPaints
For the graph to be valid, it shall also be visually bounded, as described in 5.7.11.1.8.2.
NOTE 	Implementations can combine testing for cycles and other well-formedness or validity requirements together with other processing for rendering the color glyph.
If the graph contains a cycle or is otherwise not well formed or valid, the paint table at which the error occurs should be ignored, that sub-graph should not be rendered, and that node in the graph should be considered to be visually bounded. The application should attempt to render the remainder of the graph, if well-formed and valid.
Future minor version updates of the COLR table could introduce new paint formats. If a paint table with an unrecognized format is encountered, it and its sub-graph should similarly be ignored, the node should be considered to be visually bounded, and the application should attempt to render the remainder of the graph.
If an application is not able to recover from errors while traversing the graph, it may ignore the color glyph entirely. If the base glyph ID has an outline, that may be rendered as a non-color glyph instead.

Add the new clause 5.7.11.2 “COLR table formats” with additional sub clauses containing the following text:
5.7.11.2 COLR table formats
Various table and record formats are defined for COLR version 0 and version 1. Several values contained within the version 1 formats are variable.
For items that vary in a variable font, the variation data is contained in an ItemVariationStore table (7.2.3). To associate each variable item with the corresponding variation data, a DeltaSetIndexMap table (7.2.3.1) is used. Within a given table that has variable items, a base/sequence scheme is used to index into the mapping data. See 5.7.11.4 for details.These use various record formats that combine a basic data type with a variation delta-set index: VarFWord, VarUFWord, VarF2Dot14, and VarFixed. These are described in 7.2.3.1.
All table offsets are from the start of the parent table in which the offset is given, unless otherwise indicated.
5.7.11.2.1 COLR header
The COLR table begins with a header. Two versions have been defined. Offsets in the header are from the start of the table.
5.7.11.2.1.1 COLR version 0
COLR version 0:
	Type
	Name
	Description

	uint16
	version
	Table version number—set to 0.

	uint16
	numBaseGlyphRecords
	Number of BaseGlyph records.

	Offset32
	baseGlyphRecordsOffset
	Offset to baseGlyphRecords array.

	Offset32
	layerRecordsOffset
	Offset to layerRecords array.

	uint16
	numLayerRecords
	Number of Layer records.

NOTE	For fonts that use COLR version 0, some early Windows implementations of the COLR table require glyph ID 1 to be the .null glyph.
5.7.11.2.1.2 COLR version 1
COLR version 1:
	Type
	Name
	Description

	uint16
	version
	Table version number—set to 1.

	uint16
	numBaseGlyphRecords
	Number of BaseGlyph records; may be 0 in a version 1 table.

	Offset32
	baseGlyphRecordsOffset
	Offset to baseGlyphRecords array (may be NULL).

	Offset32
	layerRecordsOffset
	Offset to layerRecords array (may be NULL).

	uint16
	numLayerRecords
	Number of Layer records; may be 0 in a version 1 table.

	Offset32
	baseGlyphV1ListOffsetbaseGlyphListOffset
	Offset to BaseGlyphV1ListBaseGlyphList table.

	Offset32
	layersV1OffsetlayerListOffset
	Offset to LayerV1ListLayerList table (may be NULL).

	Offset32
	clipListOffset
	Offset to ClipList table (may be NULL).

	Offset32
	varIndexMapOffset
	Offset to DeltaSetIndexMap table (may be NULL).

	Offset32
	itemVariationStoreOffset
	Offset to ItemVariationStore (may be NULL).

The BaseGlyphV1ListBaseGlyphList and its subtables are only used in COLR version 1.
The LayersV1ListLayerList is only used in conjunction with the BaseGlyphV1ListBaseGlyphList and, specifically, with PaintColrLayers tables (5.7.11.2.5.1); it is not required if no color glyphs use a PaintColrLayers table. If not used, set layerListOffset layersV1Offset to NULL.
The ClipList is only used in conjunction with the BaseGlyphList. If not used, set clipListOffset to NULL.
The ItemVariationStore (7.2.3) is used in conjunction with a BaseGlyphV1ListBaseGlyphList and its subtables, but only in variable fonts. If it is not used, set itemVariationStoreOffset to NULL.
The DeltaSetIndexMap table is described in 7.2.3.1. Within the COLR table, either format 0 or format 1 of the DeltaSetIndexMap can be used. A DeltaSetIndexMap is used in conjunction with the ItemVariationStore in a variable font. The DeltaSetIndexMap is optional: if an ItemVariationStore is present but a DeltaSetIndexMap is not included (varIndexMapOffset is NULL), then an implicit mapping is used. See 5.7.11.4 for details.
5.7.11.2.1.3 Mixing version 0 and version 1 formats
A font that uses COLR version 1 and that includes a BaseGlyphV1ListBaseGlyphList can also include BaseGlyph and Layer records for compatibility with applications that only support COLR version 0.
Color glyphs that can be implemented in COLR version 0 using BaseGlyph and Layer records can also be implemented using the version 1 BaseGlyphV1ListBaseGlyphList and subtables. Thus, a font that uses the version 1 formats does not need to use the version 0 BaseGlyph and Layer records. However, a font may use the version 1 structures for some base glyphs and the version 0 structures for other base glyphs. A font may also include a version 1 color glyph definition for a given base glyph ID that is equivalent to a version 0 definition, though this should never be needed.
A font may define a color glyph for a given base glyph ID using version 0 formats, and also define a different color glyph for the same base glyph ID using version 1 formats. Applications that support COLR version 1 should give preference to the version 1 color glyph.
For applications that support COLR version 1, the application should search for a base glyph ID first in the BaseGlyphV1ListBaseGlyphList. Then, if not found, search in the baseGlyphRecords array, if present.
5.7.11.2.2 BaseGlyph and Layer records
BaseGlyph and Layer records are required for COLR version 0, but optional for version 1. (See 5.7.11.2.1.3.)
A BaseGlyph record is used to map a base glyph to a sequence of layer records that define the corresponding color glyph. The BaseGlyph record includes a base glyph index, an index into the layerRecords array, and the number of layers.
BaseGlyph record:
	Type
	Name
	Description

	uint16
	glyphID
	Glyph ID of the base glyph.

	uint16
	firstLayerIndex
	Index (base 0) into the layerRecords array.

	uint16
	numLayers
	Number of color layers associated with this glyph.

The glyph ID shall be less than the numGlyphs value in the ‘maxp’ table (5.2.6).
The BaseGlyph records shall be sorted in increasing glyphID order. It is assumed that a binary search can be used to find a matching BaseGlyph record for a specific glyphID.
The color glyph for a given base glyph is defined by the consecutive records in the layerRecords array for the specified number of layers, starting with the record indicated by firstLayerIndex. The first record in this sequence is the bottom layer in the z-order, and each subsequent layer is stacked on top of the previous layer.
The layer record sequences for two different base glyphs may overlap, with some layer records used in multiple color glyph definitions.
The Layer record specifies the glyph used as the graphic element for a layer and the solid color fill.
Layer record:
	Type
	Name
	Description

	uint16
	glyphID
	Glyph ID of the glyph used for a given layer.

	uint16
	paletteIndex
	Index (base 0) for a palette entry in the CPAL table.

The glyphID in a Layer record shall be less than the numGlyphs value in the ‘maxp’ table. That is, it shall be a valid glyph with outline data in the ‘glyf’ (5.3.4), ‘CFF’ (5.4.2) or CFF2 (5.4.3) table. See 5.7.11.1.8.2 for requirements regarding glyph metrics of referenced glyphs.
The paletteIndex value shall be less than the numPaletteEntries value in the CPAL table (5.7.12). A paletteIndex value of 0xFFFF is a special case, indicating that the text foreground color (as determined by the application) is to be used.
5.7.11.2.3 BaseGlyphV1ListBaseGlyphList, and LayerV1ListLayerList and ClipList
The BaseGlyphV1ListBaseGlyphList table is, conceptually, similar to the baseGlyphRecords array in COLR version 0, providing records that map a base glyph to a color glyph definition. The color glyph definitions that each refer to are significantly different, however—see 5.7.11.1.
BaseGlyphV1ListBaseGlyphList table:
	Type
	Name
	Description

	uint32
	numBaseGlyphV1RecordsnumBaseGlyphPaintRecords
	

	BaseGlyphV1RecordBaseGlyphPaintRecord
	baseGlyphV1RecordsbaseGlyphPaintRecords[numBaseGlyphV1RecordsnumBaseGlyphPaintRecords]
	

BaseGlyphV1RecordBaseGlyphPaintRecord:
	Type
	Name
	Description

	uint16
	glyphID
	Glyph ID of the base glyph.

	Offset32
	paintOffset
	Offset to a Paint table.

The glyph ID value shall be less than is not limited to the numGlyphs value in the ‘maxp’ table (5.2.6). See 5.7.11.1.7.3 for more information.
The records in the baseGlyphV1RecordsbaseGlyphPaintRecords array shall be sorted in increasing glyphID order. It is intended that a binary search can be used to find a matching BaseGlyphV1RecordBaseGlyphPaintRecord for a specific glyphID.
The paint table referenced by the BaseGlyphV1RecordBaseGlyphPaintRecord is the root of the graph for a color glyph definition.
NOTE	Often the paint table that is the root of the graph for the color glyph definition will be a PaintColrLayers table, though this is not required. See 5.7.11.1.9 for more information regarding the graph of a color glyph, and 5.7.11.1.4 for background information regarding the PaintColrLayers table.
A LayerV1ListLayerList table is used in conjunction with PaintColrLayers tables to represent layer structures. A single LayerV1ListLayerList is defined and can be used by multiple PaintColrLayers tables, each of which references a slice of the layer list.
LayerV1ListLayerList table:
	Type
	Name
	Description

	uint32
	numLayers
	

	Offset32
	paintOffsets[numLayers]
	Offsets to Paint tables.

The sequence of offsets to paint tables corresponds to a bottom-up z-order layering of the graphic compositions defined by the sub-graph of each referenced paint table graph. For a given slice of the list, the sub-graph of the first paint table defines the element at the bottom of the z-order, and the sub-graph of each subsequent paint table defines an element that is layered on top of the previous element. As each element is a composition defined in a sub-graph, one of these elements may itself be multi-layered. In that case, the layers of this element are stacked above all previous layers, and layers of following elements are stacked above the top layer of this element.
Offsets for paint tables not referenced by any PaintColrLayers table should not be included in the paintOffsets array.
A ClipList table is used to provide precomputed clip boxes for color glyphs. It contains an array of Clip records, each of which associates a range of base glyph IDs with a ClipBox table. The ClipBox table provides a precomputed clip box for the associated color glyphs. Clip boxes are optional: a font may provide clip boxes for some color glyphs but not others.
ClipList table:
	Type
	Name
	Description

	uint32
	numClips
	Number of Clip records.

	Clip
	clips[numClips]
	Clip records. Sorted by startGlyphID.

Clip record:
	Type
	Name
	Description

	uint16
	startGlyphID
	First glyph ID in the range.

	uint16
	endGlyphID
	Last glyph ID in the range.

	Offset32
	clipBoxOffset
	Offset to a ClipBox table.

Within a ClipList table, the glyph ID ranges of Clip records shall not overlap.
Two Clipbox table formats are defined: format 0 for clip boxes without variation, and format 1 allowing for clip boxes that can vary in a variable font.
ClipBox table format 0, static clip box:
	Type
	Name
	Description

	uint8
	format
	Set to 0.

	FWORD
	xMin
	Minimum x of clip box.

	FWORD
	yMin
	Minimum y of clip box.

	FWORD
	xMax
	Maximum x of clip box.

	FWORD
	yMax
	Maximum y of clip box.

ClipBox table format 1, variable clip box:
	Type
	Name
	Description

	uint8
	format
	Set to 1.

	FWORD
	xMin
	Minimum x of clip box. For variation, use varIndexBase + 0.

	FWORD
	yMin
	Minimum y of clip box. For variation, use varIndexBase + 1.

	FWORD
	xMax
	Maximum x of clip box. For variation, use varIndexBase + 2.

	FWORD
	yMax
	Maximum y of clip box. For variation, use varIndexBase + 3.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

Any content drawn outside the clip box shall not render.
The clip box is not required to be a tight bounding box around the content. As it may be used by implementations to allocate resources, however, it should not be unnecessarily large.
NOTE	At runtime, when computing a variable ClipBox, compute the min/max coordinates using floating point values and then round to integer values such that the clip box expands. That is, round xMin and yMin towards negative infinity and round xMax and yMax towards positive infinity.
For variable data, a base/sequence scheme is used to index into variation mapping data. See 5.7.11.4 for details.
5.7.11.2.4 Color Indexreferences, ColorStop and ColorLine
Colors are used in solid color fills for graphic elements, or as stops in a color line used to define a gradient. Colors are defined by reference to palette entries in the CPAL table (5.7.12). While CPAL entries include an alpha component, formats for COLR version 1 that reference palette entries also includes a separate alpha specification to allow different graphic elements to use the same color but with different alpha values, and to allow for variation of the alpha in variable fontscolor-index records for referencing palette entries are defined here that includes a separate alpha specification to allow different graphic elements to use the same color but with different alpha values, and to allow for variation of the alpha in variable fonts.
Two color-index record formats are defined: one that allows for variation of alpha, and one that does not.
ColorIndex record:
	Type
	Name
	Description

	uint16
	paletteIndex
	Index for a CPAL palette entry.

	F2DOT14
	alpha
	Alpha value.

VarColorIndex record:
	Type
	Name
	Description

	uint16
	paletteIndex
	Index for a CPAL palette entry.

	VarF2Dot14
	alpha
	Variable alpha value.

A paletteIndex value of 0xFFFF is a special case, indicating that the text foreground color (as determined by the application) is to be used.
The alpha value (alpha.value for VarF2Dot14) is always set explicitly. Values for alpha outside the range [0., 1.] (inclusive) are reserved; values outside this range shall be clipped. A value of zero means no opacity (fully transparent); 1.0 means fully opaque (no transparency). The alpha indicated in this record is multiplied with the alpha component of the CPAL entry (converted to float—divide by 255). Note that the resulting alpha value can be combined with and does not supersede alpha or opacity attributes set in higher-level, application-defined contexts.
See 5.7.11.1.1 for more information regarding color references and solid color fills. Solid color fills are defined using a PaintSolid or PaintVarSolid table, described below—see 5.7.11.2.5.2.
Gradients are defined using a color line. A color line is a mapping of real numbers to color values, defined using color stops. See 5.7.11.1.2.1 for an overview and additional details.
Two color-stop record formats are defined: one that allows for variation of stop offset position or of alpha, and one that does not. The format supporting variations uses a base/sequence scheme to index into mapping data; see 5.7.11.4 for details.
ColorStop record:
	Type
	Name
	Description

	F2DOT14
	stopOffset
	Position on a color line.

	ColorIndexuint16
	colorpaletteIndex
	Index for a CPAL palette entry.

	F2DOT14
	alpha
	Alpha value.

VarColorStop record:
	Type
	Name
	Description

	VarF2Dot14F2DOT14
	stopOffset
	Position on a color line; variable. For variation, use varIndexBase + 0.

	uint16VarColorIndex
	paletteIndexcolor
	Index for a CPAL palette entry.

	F2DOT14
	alpha
	Alpha value. For variation, use varIndexBase + 1.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

A color line is defined by an array of color stop records plus an extend mode. Two color-line table formats are defined: one that allows for variation of color stop offsets positions or of alpha values, and one that does not. Different paint table formats for gradients use one or the other of the color line formats.
ColorLine table:
	Type
	Name
	Description

	uint8
	extend
	An Extend enum value.

	uint16
	numStops
	Number of ColorStop records.

	ColorStop
	colorStops[numStops]
	

VarColorLine table:
	Type
	Name
	Description

	uint8
	extend
	An Extend enum value.

	uint16
	numStops
	Number of ColorStop records.

	VarColorStop
	colorStops[numStops]
	Allows for variations.

Applications shall apply the colorStops entries in increasing stopOffset order. The Within a variable font, the stopOffset values can vary, and uses a variable structure and, with a variable font, the relative orderings of ColorStop color stop records along the color line can change as a result of variation. With a variable font, the colorStops entries shall be ordered after the instance values for the stop offsets have been derived.
A color line defines stops for only certain positions along the line, but the color line extends infinitely in either direction. The extend field is used to indicate how the color line is extended. The same behavior is used for extension in both directions. The extend field uses the following enumeration:
Extend enumeration:
	Value
	Name
	Description

	0
	EXTEND_PAD
	Use nearest color stop.

	1
	EXTEND_REPEAT
	Repeat from farthest color stop.

	2
	EXTEND_REFLECT
	Mirror color line from nearest end.

The extend mode behaviors are described in detail in 5.7.11.1.2.1. If a ColorLine in a font has an unrecognized extend value, applications should use EXTEND_PAD by default.
5.7.11.2.5 Paint tables
Paint tables are used for COLR version 1 color glyph definitions. Twenty PThirty-two paint table formats are defined (formats 1 to 2032). Some formats come in non-variable and variable pairs, but otherwise, each provides different graphic capability for defining the composition for a color glyph. The graphic capability of each format and the manner in which they are combined to represent a color glyph has been described above—see 5.7.11.1.
Each paint table format has a one-byte format field as the first field. When parsing font data, the format field can be read first to determine the format of the table.
5.7.11.2.5.1 Format 1: PaintColrLayers
Format 1 is used to define a vector of layers. The layers are a slice of layers from the LayerV1ListLayerList table. The first layer is the bottom of the z-order, and subsequent layers are composited on top using the COMPOSITE_SRC_OVER composition mode (see 5.7.11.2.5.1213).
For general information on the PaintColrLayers table, see 5.7.11.1.4. For information about its use for shared, re-usable components, see 5.7.11.1.7.2.
PaintColrLayers table (format 1):
	Type
	Name
	Description

	uint8
	format
	Set to 1.

	uint8
	numLayers
	Number of offsets to paint tables to read from LayerV1ListLayerList.

	uint32
	firstLayerIndex
	Index (base 0) into the LayerV1ListLayerList.

NOTE	An 8-bit value is used for numLayers to minimize size for common scenarios. If more than 256 layers are needed, then two or more PaintColrLayers tables can be combined in a tree using a PaintComposite table or another PaintColrLayers table to combine them.
5.7.11.2.5.2 Formats 2 and 3: PaintSolid, PaintVarSolid
Formats 2 and 3 are used to specify a solid color fill. Format 3 allows for variation of alpha in a variable font; format 2 provides a more compact representation when variation is not required. Format 3 shall not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.
For general information about specifying color values, see 5.7.11.1.1. For information about applying a fill to a shape, see 5.7.11.1.3.
PaintSolid table (format 2):
	Type
	Name
	Description

	uint8
	format
	Set to 2.

	ColorIndexuint16
	paletteIndexcolor
	Index for a CPAL palette entryColorIndex record for the solid color fill.

	F2DOT14
	alpha
	Alpha value.

PaintVarSolid table (format 3):
	Type
	Name
	Description

	uint8
	format
	Set to 3.

	uint16VarColorIndex
	paletteIndexcolor
	Index for a CPAL palette entry.VarColorIndex record for the solid color fill.

	F2DOT14
	alpha
	Alpha value. For variation, use varIndexBase + 0.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

For the ColorIndex and VarColorIndex record formats, see 5.7.11.2.4.
5.7.11.2.5.3 Formats 4 and 5: PaintLinearGradient, PaintVarLinearGradient
Formats 4 and 5 are used to specify a linear gradient fill. Format 4 allows for variation of color stop positions or of alpha in a variable font; format 5 provides a more compact representation when variation is not required. Format 5 shall not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.
For general information about linear gradients, see 5.7.11.1.2.2. For information about applying a fill to a shape, see 5.7.11.1.3.
The PaintLinearGradient and PaintVarLinearGradient tables have a ColorLine and VarColorLine subtable, respectively. For the ColorLine and VarColorLine table formats, see 5.7.11.2.4. For background information on the color line, see 5.7.11.1.2.1.
PaintLinearGradient table (format 4):
	Type
	Name
	Description

	uint8
	format
	Set to 4.

	Offset24
	colorLineOffset
	Offset to ColorLine table.

	FWORD
	x0
	Start point (p₀) x coordinate.

	FWORD
	y0
	Start point (p₀) y coordinate.

	FWORD
	x1
	End point (p₁) x coordinate.

	FWORD
	y1
	End point (p₁) y coordinate.

	FWORD
	x2
	Rotation point (p₂) x coordinate.

	FWORD
	y2
	Rotation point (p₂) y coordinate.

PaintVarLinearGradient table (format 5):
	Type
	Name
	Description

	uint8
	format
	Set to 5.

	Offset24
	colorLineOffset
	Offset to VarColorLine table.

	FWORDVarFWord
	x0
	Start point (p₀) x coordinate. For variation, use varIndexBase + 0.

	FWORDVarFWord
	y0
	Start point (p₀) y coordinate. For variation, use varIndexBase + 1.

	FWORDVarFWord
	x1
	End point (p₁) x coordinate. For variation, use varIndexBase + 2.

	FWORDVarFWord
	y1
	End point (p₁) y coordinate. For variation, use varIndexBase + 3.

	FWORDVarFWord
	x2
	Rotation point (p₂) x coordinate. For variation, use varIndexBase + 4.

	FWORDVarFWord
	y2
	Rotation point (p₂) y coordinate. For variation, use varIndexBase + 5.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

The PaintVarLinearGradient format uses a base/sequence scheme to index into mapping data; see 5.7.11.4 for details.
5.7.11.2.5.4 Formats 6 and 7: PaintRadialGradient, PaintVarRadialGradient
Formats 6 and 7 are used to specify a radial gradient fill. Format 7 allows for variation of color stop positions or of alpha in a variable font; format 6 provides a more compact representation when variation is not required. Format 7 shall not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.
For general information about radial gradients supported in COLR version 1, see 5.7.11.1.2.3. For information about applying a fill to a shape, see 5.7.11.1.3.
The PaintRadialGradient and PaintVarRadialGradient tables have a ColorLine and VarColorLine subtable, respectively. For the ColorLine and VarColorLine table formats, see in 5.7.11.2.4. For background information on the color line, see 5.7.11.1.2.1.
PaintRadialGradient table (format 6):
	Type
	Name
	Description

	uint8
	format
	Set to 6.

	Offset24
	colorLineOffset
	Offset to ColorLine table.

	FWORD
	x0
	Start circle center x coordinate.

	FWORD
	y0
	Start circle center y coordinate.

	UFWORD
	radius0
	Start circle radius.

	FWORD
	x1
	End circle center x coordinate.

	FWORD
	y1
	End circle center y coordinate.

	UFWORD
	radius1
	End circle radius.

PaintVarRadialGradient table (format 7):
	Type
	Name
	Description

	uint8
	format
	Set to 7.

	Offset24
	colorLineOffset
	Offset to VarColorLine table.

	FWORDVarFWord
	x0
	Start circle center x coordinate. For variation, use varIndexBase + 0.

	FWORDVarFWord
	y0
	Start circle center y coordinate. For variation, use varIndexBase + 1.

	UFWORDVarUFWord
	radius0
	Start circle radius. For variation, use varIndexBase + 2.

	FWORDVarFWord
	x1
	End circle center x coordinate. For variation, use varIndexBase + 3.

	FWORDVarFWord
	y1
	End circle center y coordinate. For variation, use varIndexBase + 4.

	UFWORDVarUFWord
	radius1
	End circle radius. For variation, use varIndexBase + 5.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

The PaintVarRadialGradient format uses a base/sequence scheme to index into mapping data; see 5.7.11.4 for details.
5.7.11.2.5.5 Formats 8 and 9: PaintSweepGradient, PaintVarSweepGradient
Formats 8 and 9 are used to specify a sweep gradient fill. Format 9 allows for variation of color stop positions or of alpha in a variable font; format 8 provides a more compact representation when variation is not required. Format 9 shall not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.
For general information about sweep gradients, see 5.7.11.1.2.4. For information about applying a fill to a shape, see 5.7.11.1.3.
The PaintSweepGradient and PaintVarSweepGradient table have a ColorLine and VarColorLine subtable, respectively. For the ColorLine and VarColorLine table formats, see 5.7.11.2.4. For background information on the color line, see 5.7.11.1.2.1.
PaintSweepGradient table (format 8):
	Type
	Name
	Description

	uint8
	format
	Set to 8.

	Offset24
	colorLineOffset
	Offset to ColorLine table.

	FWORD
	centerX
	Center x coordinate.

	FWORD
	centerY
	Center y coordinate.

	FixedF2DOT14
	startAngle
	Start of the angular range of the gradient, 180° in counter-clockwise degrees per 1.0 of value.

	F2DOT14Fixed
	endAngle
	End of the angular range of the gradient, 180° in counter-clockwise degrees per 1.0 of value.

PaintVarSweepGradient table (format 9):
	Type
	Name
	Description

	uint8
	format
	Set to 9.

	Offset24
	colorLineOffset
	Offset to VarColorLine table.

	FWORDVarFWord
	centerX
	Center x coordinate. For variation, use varIndexBase + 0.

	FWORDVarFWord
	centerY
	Center y coordinate. For variation, use varIndexBase + 1.

	F2DOT14VarFixed
	startAngle
	Start of the angular range of the gradient, 180° in counter-clockwise degrees per 1.0 of value. For variation, use varIndexBase + 2.

	F2DOT14VarFixed
	endAngle
	End of the angular range of the gradient, 180° in counter-clockwise degrees per 1.0 of value. For variation, use varIndexBase + 3.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

The PaintVarSweepGradient format uses a base/sequence scheme to index into mapping data; see 5.7.11.4 for details.
Angles are expressed in counter-clockwise degrees from the direction of the positive x-axis in the design grid.
5.7.11.2.5.6 Format 10: PaintGlyph
Format 10 is used to specify a glyph outline to use as a shape to be filled or, equivalently, a clip region. The outline sets a clip region that constrains the content of a separate paint subtable and the sub-graph linked from that subtable.
For information about applying a fill to a shape, see 5.7.11.1.3.
PaintGlyph table (format 10):
	Type
	Name
	Description

	uint8
	format
	Set to 10.

	Offset24
	paintOffset
	Offset to a Paint table.

	uint16
	glyphID
	Glyph ID for the source outline.

The glyphID value shall be less than the numGlyphs value in the ‘maxp’ table (5.2.6). That is, it shall be a valid glyph with outline data in the ‘glyf’ (5.3.4), ‘CFF’ (5.4.2) or CFF2 (5.4.3) table. Only that outline data is used. In particular, if this glyph ID has a description in the COLR table (glyphID appears in a COLR BaseGlyph record or the BaseGlyphV1ListBaseGlyphList), that COLR data is not relevant for purposes of the PaintGlyph table.
5.7.11.2.5.7 Format 11: PaintColrGlyph
Format 11 is used to allow a color glyph definition from the BaseGlyphV1ListBaseGlyphList to be a re-usable component that can be incorporated into multiple color glyph definitions. See 5.7.11.1.7.3 for more information.
PaintColrGlyph table (format 11):
	Type
	Field nName
	Description

	uint8
	format
	Set to 11.

	uint16
	glyphID
	Virtual gGlyph ID for a BaseGlyphV1ListBaseGlyphList base glyph.

The glyphID value shall be a glyphID found in a BaseGlyphV1Record BaseGlyphPaintRecord within the BaseGlyphV1ListBaseGlyphList. . It may be a virtual glyph ID, greater than or equal to the numGlyphs value in the ‘maxp’ table (5.2.6). The BaseGlyphPaintRecord BaseGlyphV1Record provides an offset to a paint table; that paint table and the graph linked from it are incorporated as a child sub-graph of the PaintColrGlyph table within the current color glyph definition.
5.7.11.2.5.8 Formats 12 and 13: PaintTransform, PaintVarTransform
Formats 12 and 13 are used to apply an affine transformation to a sub-graph. The paint table that is the root of the sub-graph is linked as a child.
Format 13 allows for variation of the transformation in a variable font; format 12 provides a more compact representation when variation is not required. Format 13 shall not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.
For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.
PaintTransform table (format 12):
	Type
	Name
	Description

	uint8
	format
	Set to 12.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	Offset24Affine2x3
	transformOffset
	An Offset to an Affine2x3 record (inline)table.

PaintVarTransform table (format 13):
	Type
	Name
	Description

	uint8
	format
	Set to 13.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	Offset24VarAffine2x3
	transformOffset
	Offset to aA VarAffine2x3 record (inline)table.

The affine transformation is defined by a 2×3 matrix, specified in an Affine2x3 or VarAffine2x3 record. The 2×3 matrix supports scale, skew, reflection, rotation, and translation transformations. The matrix elements in the VarAffine2x3 record table supports mapping into variation datause VarFixed records, allowing the transform definition to be variable in a variable font.
Affine2x3 recordtable:
	Type
	Name
	Description

	Fixed
	xx
	x-component of transformed x-basis vector.

	Fixed
	yx
	y-component of transformed x-basis vector.

	Fixed
	xy
	x-component of transformed y-basis vector.

	Fixed
	yy
	y-component of transformed y-basis vector.

	Fixed
	dx
	Translation in x direction.

	Fixed
	dy
	Translation in y direction.

VarAffine2x3 recordtable:
	Type
	Name
	Description

	VarFixed
	xx
	x-component of transformed x-basis vector. For variation, use varIndexBase + 0.

	VarFixed
	yx
	y-component of transformed x-basis vector. For variation, use varIndexBase + 1.

	VarFixed
	xy
	x-component of transformed y-basis vector. For variation, use varIndexBase + 2.

	VarFixed
	yy
	y-component of transformed y-basis vector. For variation, use varIndexBase + 3.

	VarFixed
	dx
	Translation in x direction. For variation, use varIndexBase + 4.

	VarFixed
	dy
	Translation in y direction. For variation, use varIndexBase + 5.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

The VarAffine2x3 format uses a base/sequence scheme to index into mapping data; see 5.7.11.4 for details.
For a pre-transformation position (x, y), the post-transformation position (x′, y′) is calculated as follows:
x′ = xx * x + xy * y + dx
y′ = yx * x + yy * y + dy
NOTE	It is helpful to understand linear transformations by their effect on x- and y-basis vectors î = (1, 0) and ĵ = (0, 1). The transform described by the Affine2x3 or VarAffine2x3 record table maps the basis vectors to î′ = (xx, yx) and ĵ′ = (xy, yy), and translates the origin to (dx, dy).
When the transformed composition from the referenced paint table (and its sub-graph) is composed into the destination (represented by the parent of this table), the source design grid origin is aligned to the destination design grid origin. The transform can translate the source such that a pre-transform position (0,0) is moved elsewhere. The post-transform origin, (0,0), is aligned to the destination origin.
5.7.11.2.5.9 Formats 14 and 15: PaintTranslate, PaintVarTranslate
Formats 14 and 15 are used to apply a translation to a sub-graph. The paint table that is the root of the sub-graph is linked as a child.
Format 15 allows for variation of the translation in a variable font; format 14 provides a more compact representation when variation is not required. Format 15 shall not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.
These tables use reduced precision for compactness. Where higher precision is required use PaintTransform/PaintVarTransform.
For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.
PaintTranslate table (format 14):
	Type
	Name
	Description

	uint8
	format
	Set to 14.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	FixedFWORD
	dx
	Translation in x direction.

	FixedFWORD
	dy
	Translation in y direction.

PaintVarTranslate table (format 15):
	Type
	Name
	Description

	uint8
	format
	Set to 15.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	FWORDVarFixed
	dx
	Translation in x direction. For variation, use varIndexBase + 0.

	FWORDVarFixed
	dy
	Translation in y direction. For variation, use varIndexBase + 1.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

The PaintVarTranslate format uses a base/sequence scheme to index into mapping data; see 5.7.11.4 for details.
NOTE	Pure translation can also be represented using the PaintTransform or PaintVarTransform table by setting xx = 1, yy = 1, xy and yx = 0, and setting dx and dy to the translation values. The PaintTranslate or PaintVarTranslate table provides a more compact representation when only translation is required.
The translation will result in the pre-transform position (0,0) being moved elsewhere. See 5.7.11.2.5.8 regarding alignment of the transformed content with the destination.
5.7.11.2.5.10 Formats 16 to 23: PaintScale and variant scaling formats
Formats 16 to 23 are used to scale a sub-graph. The paint table that is the root of the sub-graph is linked as a child. Several variant formats are provided:
· Formats 16 and 17: scale in x or y directions relative to the origin. Format 17 allows for variation of the x and y scale factors in a variable font; format 16 provides a more compact representation when variation is not required.
· Formats 18 and 19: scale in x or y directions relative to a specified center. Format 19 allows for variation of the x and y scale factors or of the center position; format 18 provides a more compact representation when variation is not required.
· Formats 20 and 21: scale uniformly in x and y directions relative to the origin. Format 21 allows for variation of the scale factor in a variable font; format 20 provides a more compact representation when variation is not required.
· Formats 22 and 23: scale uniformly in x and y directions relative to a specified center. Format 23 allows for variation of the scale factor or of the center position; format 22 provides a more compact representation when variation is not required.
Formats 17, 19, 21 and 23 shall not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.
These tables use reduced precision for compactness. Where higher precision is required use PaintTransform/PaintVarTransform.
For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.
PaintScale table (format 16):
	Type
	Name
	Description

	uint8
	format
	Set to 16.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	scaleX
	Scale factor in x direction.

	F2DOT14
	scaleY
	Scale factor in y direction.

PaintVarScale table (format 17):
	Type
	Name
	Description

	uint8
	format
	Set to 17.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	scaleX
	Scale factor in x direction. For variation, use varIndexBase + 0.

	F2DOT14
	scaleY
	Scale factor in y direction. For variation, use varIndexBase + 1.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

PaintScaleAroundCenter table (format 18):
	Type
	Name
	Description

	uint8
	format
	Set to 18.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	scaleX
	Scale factor in x direction.

	F2DOT14
	scaleY
	Scale factor in y direction.

	FWORD
	centerX
	x coordinate for the center of scaling.

	FWORD
	centerY
	y coordinate for the center of scaling.

PaintVarScaleAroundCenter table (format 19):
	Type
	Name
	Description

	uint8
	format
	Set to 19.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	scaleX
	Scale factor in x direction. For variation, use varIndexBase + 0.

	F2DOT14
	scaleY
	Scale factor in y direction. For variation, use varIndexBase + 1.

	FWORD
	centerX
	x coordinate for the center of scaling. For variation, use varIndexBase + 2.

	FWORD
	centerY
	y coordinate for the center of scaling. For variation, use varIndexBase + 3.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

PaintScaleUniform table (format 20):
	Type
	Name
	Description

	uint8
	format
	Set to 20.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	scale
	Scale factor in x and y directions.

PaintVarScaleUniform table (format 21):
	Type
	Name
	Description

	uint8
	format
	Set to 21.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	scaleX
	Scale factor in x and y directions. For variation, use varIndexBase + 0.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

PaintScaleUniformAroundCenter table (format 22):
	Type
	Name
	Description

	uint8
	format
	Set to 22.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	scale
	Scale factor in x and y directions.

	FWORD
	centerX
	x coordinate for the center of scaling.

	FWORD
	centerY
	y coordinate for the center of scaling.

PaintVarScaleUniformAroundCenter table (format 23):
	Type
	Name
	Description

	uint8
	format
	Set to 23.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	scale
	Scale factor in x and y directions. For variation, use varIndexBase + 0.

	FWORD
	centerX
	x coordinate for the center of scaling. For variation, use varIndexBase + 1.

	FWORD
	centerY
	y coordinate for the center of scaling. For variation, use varIndexBase + 2.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

The PaintVarScale, PaintVarScaleAroundCenter, PaintVarScaleUniform, and PaintVarScaleUniformAroundCenter formats use a base/sequence scheme to index into mapping data; see 5.7.11.4 for details.
NOTE	Pure scaling can also be represented using the PaintTransform or PaintVarTransform table. For scaling about the origin, this could be done by setting xx and yy to x and y scale factors, and setting xy, yx, dx and dy = 0. The PaintScale table and variants provide more compact representation when only scaling is required.
5.7.11.2.5.10 11 Formats 16 24 and 1to 27: PaintRotate, PaintVarRotate, PaintRotateAroundCenter, PaintVarRotateAroundCenter
Formats 16 and 124 to 27 are used to apply a rotation to a sub-graph. The paint table that is the root of the sub-graph is linked as a child. The amount of rotation is expressed directly as an angle, using a floating point value where 1.0 represents an angle of 180°. and X and Y coordinates can be provided for the center of rotation.
Formats 24 and 25 apply rotations using the origin as the center of rotation. Format 25 allows for variation of the rotation in a variable font; format 24 provides a more compact representation when variation is not required.
Formats 26 and 27 apply rotations around a specified center of rotation. Format 27 allows for variation of the rotation or of the position of the center of rotation in a variable font; format 26 provides a more compact representation when variation is not required.
Formats 25 and 27 shall not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.
These tables use reduced precision for compactness. Where higher precision is required use PaintTransform/PaintVarTransform.
Format 17 allows for variation of the rotation in a variable font; format 16 provides a more compact representation when variation is not required. Format 17 shall not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.
For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.
PaintRotate table (format 24):
	Type
	Name
	Description

	uint8
	format
	Set to 24.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	angle
	Rotation angle, 180° in counter-clockwise degrees per 1.0 of value.

PaintVarRotate table (format 25):
	Type
	Name
	Description

	uint8
	format
	Set to 25.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	angle
	Rotation angle, 180° in counter-clockwise degrees per 1.0 of value. For variation, use varIndexBase + 0.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

PaintRotateAroundCenter table (format 1626):
	Type
	Name
	Description

	uint8
	format
	Set to 1626.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14Fixed
	angle
	Rotation angle, 180° in counter-clockwise degrees per 1.0 of valueRotation angle, in counter-clockwise degrees.

	FWORDFixed
	centerX
	x coordinate for the center of rotation.

	FWORDFixed
	centerY
	y coordinate for the center of rotation.

PaintVarRotateAroundCenter table (format 1727):
	Type
	Name
	Description

	uint8
	format
	Set to 1727.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14VarFixed
	angle
	Rotation angle, 180° in counter-clockwise degrees per 1.0 of valueRotation angle, in counter-clockwise degrees. For variation, use varIndexBase + 0.

	FWORDVarFixed
	centerX
	x coordinate for the center of rotation. For variation, use varIndexBase + 1.

	FWORDVarFixed
	centerY
	y coordinate for the center of rotation. For variation, use varIndexBase + 2.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

The PaintVarRotate and PaintVarRotateAroundCenter formats use a base/sequence scheme to index into mapping data; see 5.7.11.4 for details.
NOTE	Pure rotation about a point can also be represented using the PaintTransform or PaintVarTransform table. For rotation about the origin, this could be done by setting matrix values as follows for angle θ:
· xx = cos(θ)
· yx = sin(θ)
· xy = -sin(θ)
· yy = cos(θ)
· dx = dy = 0
The important difference of the PaintRotate and PaintVarRotate table and its variants is in allowing an angle to be specified directly in degrees, rather than as changes to basis vectors. In variable fonts, if a rotation angle needs to vary, it is easier to get smooth variation if an angle is specified directly than when using trigonometric functions to derive matrix elements.
NOTE	The rotation angle is represented using an F2DOT14 value, which supports values in the range [-2, 2). Since each 1.0 unit represents a change of 180°, rotation angles of [-360, 360) can be represented directly. Variations of the rotation angle are not limited to that range, however.
NOTE	If representation of rotation directly as an angle is preferred but higher precision is required to specify a center of rotation, a chained sequence of transforms can be used. For example, a PaintTransform can be used to align the origin to the desired center of rotation, then PaintRotate can be used for the desired rotation, and a second PaintTransform can be used to reset the origin.
When combining the transform effect of a PaintRotate or PaintVarRotate table (or variants) with other transforms, the result shall be the same as if the rotation were represented using an equivalent matrix or sequence of matrices.
A rotation can result in the pre-transform position (0, 0) being moved elsewhere. See 5.7.11.2.5.8 regarding alignment of the transformed content with the destination.
5.7.11.2.5.11 12 Format 18 28 and 19to 31: PaintSkew, PaintVarSkew, PaintSkewAroundCenter, PaintVarSkewAroundCenter
Formats 18 and 1928 to 31 are used to apply a skew to a sub-graph. The paint table that is the root of the sub-graph is linked as a child. The amounts of skew in the X x or Y y direction is are expressed directly as angles, using floating point values where 1.0 represents an angle of 180°and X and Y coordinates can be provided for the center of rotation.
Formats 19 28 and 29 apply skews using the origin as the center of rotation for the skew. Format 29 allows for variation of the rotation in a variable font; format 18 28 provides a more compact representation when variation is not required.
Formats 30 and 31 apply skews around a specified center of rotation. Format 31 allows for variation of the rotation or of the position of the center of rotation in a variable font; format 30 provides a more compact representation when variation is not required.
19 Formats 29 and 31 shall not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.
These tables use reduced precision for compactness. Where higher precision is required use PaintTransform/PaintVarTransform.
For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.
PaintSkew table (format 28):
	Type
	Name
	Description

	uint8
	format
	Set to 28.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	xSkewAngle
	Angle of skew in the direction of the x-axis, 180° in counter-clockwise degrees per 1.0 of value.

	F2DOT14
	ySkewAngle
	Angle of skew in the direction of the y-axis, 180° in counter-clockwise degrees per 1.0 of value.

PaintVarSkew table (format 29):
	Type
	Name
	Description

	uint8
	format
	Set to 29.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14
	xSkewAngle
	Angle of skew in the direction of the x-axis, 180° in counter-clockwise degrees per 1.0 of value. For variation, use varIndexBase + 0.

	F2DOT14
	ySkewAngle
	Angle of skew in the direction of the y-axis, 180° in counter-clockwise degrees per 1.0 of value. For variation, use varIndexBase + 1.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

PaintSkewAroundCenter table (format 1830):
	Type
	Name
	Description

	uint8
	format
	Set to 1830.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14Fixed
	xSkewAngle
	Angle of skew in the direction of the x-axis, 180° in counter-clockwise degrees per 1.0 of valuein counter-clockwise degrees.

	F2DOT14Fixed
	ySkewAngle
	Angle of skew in the direction of the y-axis, 180° in counter-clockwise degrees per 1.0 of valuein counter-clockwise degrees.

	FWORDFixed
	centerX
	x coordinate for the center of rotation.

	FWORDFixed
	centerY
	y coordinate for the center of rotation.

PaintVarSkewAroundCenter table (format 1931):
	Type
	Name
	Description

	uint8
	format
	Set to 1931.

	Offset24
	paintOffset
	Offset to a Paint subtable.

	F2DOT14VarFixed
	xSkewAngle
	Angle of skew in the direction of the x-axis, 180° in counter-clockwise degrees per 1.0 of valuein counter-clockwise degrees. For variation, use varIndexBase + 0.

	F2DOT14VarFixed
	ySkewAngle
	Angle of skew in the direction of the y-axis, 180° in counter-clockwise degrees per 1.0 of valuein counter-clockwise degrees. For variation, use varIndexBase + 1.

	FWORDVarFixed
	centerX
	x coordinate for the center of rotation. For variation, use varIndexBase + 2.

	FWORDVarFixed
	centerY
	y coordinate for the center of rotation. For variation, use varIndexBase + 3.

	uint32
	varIndexBase
	Base index into DeltaSetIndexMap.

The PaintVarSkew and PaintVarSkewAroundCenter formats use a base/sequence scheme to index into mapping data; see 5.7.11.4 for details.
NOTE	Pure skews about a point can also be represented using the PaintTransform or PaintVarTransform table. For skews about the origin, this could be done by setting matrix values as follows for x skew angle φ and y skew angle ψ:
· xx = yy = 1
· yx = tan(ψ)
· xy = -tan(φ)
· dx = dy = 0
The important difference of the PaintSkew and PaintVarSkew tables and its variants is in being able to specify skew as an angle, rather than as changes to basis vectors. In variable fonts, if a skew angle needs to vary, it is easier to get smooth variation if an angle is specified directly than when using trigonometric functions to derive matrix elements.
NOTE	The skew angles are represented using F2DOT14 values, which support values in the range [-2, 2). Since each 1.0 unit represents a change of 180°, skew angles of [-360, 360) can be represented directly. Variations of the skew angle are not limited to that range, however.
NOTE	If representation of skew directly as an angle is preferred but higher precision is required to specify a center of rotation, a chained sequence of transforms can be used. For example, a PaintTransform can be used to align the origin to the desired center of rotation, then PaintSkew can be used for the desired skew rotation, and a second PaintTransform can be used to reset the origin.
When combining the transform effect of a PaintSkew or PaintVarSkew table (or variants) with other transforms, the result shall be the same as if the skew were represented using an equivalent matrix or sequence of matrices.
A skew can result in the pre-transform position (0, 0) being moved elsewhere. See 5.7.11.2.5.8 regarding alignment of the transformed content with the destination.
5.7.11.2.5.12 13 Format 2032: PaintComposite
Format 20 32 is used to combine two layered compositions, referred to as source and backdrop, using different compositing or blending modes. The available compositing and blending modes are defined in an enumeration. For general information and examples, see 5.7.11.1.6.
NOTE	The backdrop is also referred to as the “destination”.
PaintComposite table (format 2032):
	Type
	Name
	Description

	uint8
	format
	Set to 2032.

	Offset24
	sourcePaintOffset
	Offset to a source Paint table.

	uint8
	compositeMode
	A CompositeMode enumeration value.

	Offset24
	backdropPaintOffset
	Offset to a backdrop Paint table, from start of PaintComposite table.

The compositionMode compositeMode value shall be one of the values defined in the CompositeMode enumeration, which are taken from the W3C Compositing and Blending Level 1 specification [33]. Details on each mode, including specifications of the required calculations using pixel color and alpha values, are provided in that specification. If an unrecognized value is encountered, COMPOSITE_CLEAR shall be used.
CompositeMode enumeration:
	Value
	Name
	Description

	
	Porter-Duff modes
	

	0
	COMPOSITE_CLEAR
	Clear

	1
	COMPOSITE_SRC
	Source ("Copy" in [33])

	2
	COMPOSITE_DEST
	Destination

	3
	COMPOSITE_SRC_OVER
	Source Over

	4
	COMPOSITE_DEST_OVER
	Destination Over

	5
	COMPOSITE_SRC_IN
	Source In

	6
	COMPOSITE_DEST_IN
	Destination In

	7
	COMPOSITE_SRC_OUT
	Source Out

	8
	COMPOSITE_DEST_OUT
	Destination Out

	9
	COMPOSITE_SRC_ATOP
	Source Atop

	10
	COMPOSITE_DEST_ATOP
	Destination Atop

	11
	COMPOSITE_XOR
	XOR

	12
	COMPOSITE_PLUS
	Plus (“Lighter” in [33])

	
	Separable color blend modes:
	

	13
	COMPOSITE_SCREEN
	screen

	14
	COMPOSITE_OVERLAY
	overlay

	15
	COMPOSITE_DARKEN
	darken

	16
	COMPOSITE_LIGHTEN
	lighten

	17
	COMPOSITE_COLOR_DODGE
	color-dodge

	18
	COMPOSITE_COLOR_BURN
	color-burn

	19
	COMPOSITE_HARD_LIGHT
	hard-light

	20
	COMPOSITE_SOFT_LIGHT
	soft-light

	21
	COMPOSITE_DIFFERENCE
	difference

	22
	COMPOSITE_EXCLUSION
	exclusion

	23
	COMPOSITE_MULTIPLY
	multiply

	
	Non-separable color blend modes:
	

	24
	COMPOSITE_HSL_HUE
	hue

	25
	COMPOSITE_HSL_SATURATION
	saturation

	26
	COMPOSITE_HSL_COLOR
	color

	27
	COMPOSITE_HSL_LUMINOSITY
	luminosity

The graphic compositions are defined by the source and backdrop paint tables and their respective sub-graphs. Conceptually, they are rendered into bitmaps, and the source is composited or blended into the backdrop using the specified composite mode.
While color values obtained from the CPAL table are represented in sRGB using the non-linear transfer function defined in the sRGB specification, the compositing and blending calculations are done after applying the inverse transfer function to derive linear-light RGB values. For more information regarding the non-linear and linear-light representations for sRGB, see Interpolation of Colors in 5.7.12.
As mentioned in 5.7.11.1.8.2, a color glyph definition shall be bounded. A sub-graph that has PaintComposite as its root is either bounded or unbounded, depending on the mode used and the boundedness of the source and backdrop sub-graphs. For each mode, boundedness is determined by the boundedness of the source and backdrop as follows:
· Always bounded:
· COMPOSITE_CLEAR
· Bounded if and only if the source is bounded:
· COMPOSITE_SRC
· COMPOSITE_SRC_OUT
· Bounded if and only if the backdrop is bounded:
· COMPOSITE_DEST
· COMPOSITE_DEST_OUT
· Bounded if and only if either the source or backdrop is bounded:
· COMPOSITE_SRC_IN
· COMPOSITE_DEST_IN
· Bounded if and only if both the source and backdrop are bounded:
· All other modes

Add the new clause 5.7.11.3 “COLR version 1 rendering algorithm” with the following text:
5.7.11.3 COLR version 1 rendering algorithm
The various graphic concepts represented by COLR version 1 formats were individually described in 5.7.11.1, and the various formats were described in 5.7.11.2. Together, these provide most of the necessary details regarding how a color glyph is rendered. The following provides a comprehensive description of the rendering process, considering the graph as a whole.
The following algorithm can be used to render color glyphs defined using version 1 formats. Applications are not required to implement rendering using this algorithm, but shall produce equivalent results.
NOTE	Checks for well-formedness and validity, as described in 5.7.11.1.9, are not repeated here. Actual implementations can integrate such checks with rendering processing.
1. Start with an initial drawing surface. As mentioned in 5.7.11.1.8.2, if a clip box is provided, it the bounding box of the base glyph can be used to determine the size. Otherwise, the graph can be traversed to compute a required size.
2. Traverse the graph of a color glyph definition, starting with the root paint table referenced by a BaseGlyphV1RecordBaseGlyphPaintRecord, using the following pseudo-code function.
// render a paint table and its sub-graph
function renderPaint(paint)

 if format 1: // PaintColrLayers
 for each referenced child paint table, in bottom-up z-order:
 // for ordering, see 5.7.11.1.4, 5.7.11.2.5.1
 call renderPaint() passing the child paint table
 compose the returned graphic onto the surface using simple alpha blending

 if format 2 or 3: // PaintSolid, PaintVarSolid
 paint the specified color onto the surface

 if format 4, 5, 6, 7, 8 or 9:
 // PaintLinearGradient, PaintVarLinearGradient
 // PaintRadialGradient, PaintVarRadialGradient
 // PaintSweepGradient, PaintVarSweepGradient
 paint the gradient onto the surface following the gradient algorithm

 if format 10: // PaintGlyph
 apply the outline of the referenced glyph to the clip region
 // take the intersection of clip regions—see 5.7.11.1.3
 call renderPaint() passing the child paint table
 restore the previous clip region

 if format 11: // PaintColrGlyph
 call renderPaint() passing the paint table referenced by the base glyph ID

 if format 12, 13, 14, 15, 16, 18 or 19 to 31:
 // PaintTransform, PaintVarTransform
 // PaintTranslate, PaintVarTranslate
 // PaintScale*, PaintVarScale*
 // PaintRotate*, PaintVarRotate*
 // PaintSkew*, PaintVarSkew*
 apply the specified transform
 // compose the transform with the current transform state—see 5.7.11.1.5
 call renderPaint() passing the child paint table
 restore the previous transform state

 if format 2032: // PaintComposite

 // render backdrop sub-graph
 call renderPaint() passing the backdrop child paint table and save the result

 // render source sub-graph
 call renderPaint() passing the source child paint table and save the result

 // compose source and backdrop
 compose the source and backdrop using the specified composite mode

 // compose final result
 compose the result of the above composition onto the surface using simple
 alpha blending

Add the new clause 5.7.11.4 “COLR table and OFF Font Variations” with the following text:
5.7.11.4 COLR table and OFF Font Variations
The COLR table can be used in variable fonts. For color glyphs defined using version 0 formats, the glyph outlines can be variable, but no other aspect of the color glyph is variable. For color glyphs defined using version 1 formats, items that can be variable include the glyph outlines plus other aspects of the color glyph definition:
· Alpha values
· Color stop offsets in gradient color lines
· Placement of gradients onto the design grid
· The arguments of transformations (matrix elements, angles, etc.)
Variation data is provided in an Item Variation Store table (7.2.3) contained within the COLR table.
In a variable font, each value within the COLR version 1 formats that is variable needs to be associated with corresponding variation data (delta sets) in the Item Variation Store. This is done using a DeltaSetIndexMap table (defined in 7.3.5.2). The delta-set index mapping table contains an array of entries that provide indices mapping into sets of delta data in the Item Variation Store. Each variable item in the COLR table is given an index (base 0) into the mapping data. For example, if a variable item in the COLR table is given an index value of 5, the sixth entry in the mapping data is used to index into the Item Variation Store.Each value within the COLR version 1 formats that can be variable is represented using a record that combines a field for the default value together with fields for a delta-set index. The delta set index is used to reference the variation data within the Item Variation Store. The record formats used include:
· VarFWord
· VarUFWord
· VarF2Dot14
· VarFixed

The indices for variable items in the COLR table are indicated using a base/sequence scheme. Each table or record that contains variable items will use a contiguous sequence of entries in the mapping array, and will include a varIndexBase field that indicates the first entry in the mapping array to be used. The variable fields within that table or record use entries in the mapping array, starting with the varIndexBase entry, in the order the fields occur in the table or record.
For example, the VarAffine2x3 table (5.7.11.2.5.8) has eight variable fields followed by the varIndexBase field. For the first variable field (xx), varIndexBase + 0 is used as the index into the mapping array; for the second variable field (yx), varIndexBase + 1 is used as the index into the mapping array; and so on.These are described in 7.2.3.1. They all follow a simple pattern: For a field type SomeType (hypothetical), the record format is as follows:
	Type
	Name
	Description

	SomeType
	value
	

	uint16
	varOuterIndex
	

	uint16
	varInnerIndex
	

The value field of these records provides the default value for a given item. The remaining fields provide index values for a particular ItemVariationData subtable and DeltaSet record—the two-level organizational hierarchy used within the Item Variation Store.
If the COLR table does not contain an Item Variation Store subtable, the index fields of these records shall be ignored by applications, and should be set to zero. The value field is read directly without any variation calculation.
If the COLR table contains an Item Variation Store subtable, the index fields shall be used to obtain a delta value that is combined with the value of the value field. In this case, the index fields of the VarFWord, VarUFWord, VarF2Dot14 and VarFixed records shall always be set with specific values. The indices are base 0, therefore 0x0000 cannot be used as an ignorable default. To indicate that an item has no variation data, the index fields shall be set to 0xFFFF/0xFFFF. (See 7.2.3.2.)
If the index for a variable item is greater than or equal to the number of entries in the mapping array, the last mapping array entry shall be used.
The sequence of indices derived from a varIndexBase value do not wrap on overflow and shall not exceed 0xFFFFFFFF. A varIndexBase value of 0xFFFFFFFF is assigned a special meaning indicating that the variable fields in the given table or record do not have variation data.
Similarly, a delta-set index mapping entry with values 0xFFFF/0xFFFF can be used to indicate that an item has no variation data. (See 7.2.3.2.)
If the COLR table does not contain an Item Variation Store subtable, the varIndexBase field of variable tables or records shall be ignored by applications, and should be set to zero.
If the COLR table contains an Item Variation Store but does not contain a mapping table (varIndexMapOffset in the COLR header is NULL), then an implicit identity mapping is used: the sequence of values beginning with varIndexBase are treated directly as delta-set indices with 16-bit sub-fields for outer (high word) and inner (low word) index values. See 7.2.3.3 for more information regarding delta set indices.
For variable fonts that use COLR version 1 formats, special considerations apply to the effect of variation on the bounding box. See 5.7.11.1.8.2 for details.
For general information on OFF font variations, see 7.1.
5.7.12 “CPAL – Palette Table”
Replace the first sentence of the first paragraph with the following:
The palette table is a set of one or more palettes, each containing a predefined number of color records.
Replace the second paragraph with the following text:
Palettes are defined by a set of color records. Each color record specifies a color in the sRGB color space using 8-bit BGRA (blue, green, red, alpha) representation. The sRGB color space is specified in IEC 61966-2-1. Details on the specification for the sRGB color space, including the color primaries and “gamma” transfer function, are also provided in CSS Color Module Level 4, section 10.2 [34].
All palettes have the same number of color records, specified by numColorRecords. All color records for all palettes are arranged in a single array, and the color records for any given palette are a contiguous sequence of color records within that array. The first color record of each palette is provided in the colorRecordIndices array.
Insert the following paragraphs at the end of the sub clause 5.7.12 with the heading “Interpolation of colors”:
Interpolation of Colors
The SVG table and version 1 of the COLR table both support color gradient fills. The gradients are defined using color stops to specify color values at specific positions along a color line, with color values for other positions on the color line derived by interpolation.
When interpolating color values, linear interpolation between color stop positions is used. For example, suppose adjacent color stops are specified for positions 0.5 and 0.9 on a color line, and a color value is being calculated for position 0.8. The color value of the first color stop will contribute 75% of the value ((0.8 - 0.5) / (0.9 - 0.5)), and the color value of the second color stop will contribute 25% of the value. Interpolated values at each position of the color line are computed in this way for each of the R, G and B color components.
When interpolating color values, specific aspects of the representation of colors as well as handling of alpha need to be considered.
Representations of sRGB color values are expressed as levels of red, green and blue color “primaries” with specific, absolute chromaticity values, which are defined in the sRGB specification. Color-primary levels can potentially be expressed using a linear-light scale that correlates directly to light energy. (On a linear-light scale, for example, a doubling of a color value would correspond to a doubling of display luminance.) For sRGB, however, standard practice is to represent levels using a scale defined by a non-linear transfer function, sometimes referred to as “gamma”. This transfer function is also defined in the sRGB specification. (See CSS Color Module Level 4, section 10.2 [34] for details.) In the CPAL table, sRGB color values are always specified in terms of the non-linear, sRGB transfer function.
NOTE	An advantage of representing colors using a non-linear scale is that it allows more effective use of limited bit depth when color-primary levels are represented as integers: smaller differences in light energy can be represented for lower levels than for higher levels. This is beneficial since the human visual system is more sensitive to differences at low luminance levels than to differences at high luminance levels.
When interpolating colors, different results will be obtained if the interpolation is computed using the non-linear scale for color levels than if using the linear-light scale. For interoperable results, whether the non-linear or linear-light scale is to be used needs to be specified.
For gradient color values in the SVG table, the required interpolation behavior is defined in the SVG 1.1 specification: the ‘color-interpolation’ property can be used in an SVG document to declare whether interpolation is done using the non-linear sRGB scale (the default), or using a linear-light scale by applying the inverse sRGB transfer function.
For gradient color values in the COLR table, interpolation shall be computed using linear-light values (i.e., after applying the inverse sRGB transfer function).
After an interpolated color value is computed, whether or not the non-linear sRGB transfer function needs to be re-applied is determined by the requirements of the implementation context.
For both the COLR and SVG tables, interpolation shall be done with alpha pre-multiplied into each linearized R, G and B component. For alpha specified in a CPAL ColorRecord, the value is converted to a floating value in the range [0, 1.0] by dividing by 255, then multiplied into each R, G and B component. For ColorIndex records iIn the COLR table, color references in formats used for version 1 include a separate alpha value; the that alpha value from the ColorIndex record (with variation, in a variable font) is multiplied into the R, G and B components as well. Interpolated values are then calculated by linear interpolation using these pre-multiplied, linear-light R, G and B values.
NOTE	Alpha components use a linear scale and can be directly interpolated apart from the R, G and B components without any linearization step.
Once interpolation of the pre-multiplied red, green and blue values and of the alpha value is complete, the red, green and blue results are then un-premultiplied by dividing each interpolated value by the corresponding interpolated alpha.
While color values are specified as 8-bit integers, the interpolation computations will require greater precision in each of the linearization, pre-multiply, and interpolation steps. Also, when rendered results are to be presented on an imaging device with known characteristics, visual banding artifacts in a gradient can be minimized by taking full advantage of the color bit depth supported by the device. For instance, if a display supports 10- or 12-bit quantization per color channel, then ideally the ramp of color values in a gradient would use that level of quantization. Other factors from the presentation context may, however, also affect the available capabilities. Therefore, no minimum level of precision is specified as a requirement

6.4.1
Replace the Script tags table with the following:
	Script
	Script Tag

	Adlam
	'adlm'

	Ahom
	'ahom'

	Anatolian Hieroglyphs
	'hluw'

	Arabic
	'arab'

	Armenian
	'armn'

	Avestan
	'avst'

	Balinese
	'bali'

	Bamum
	'bamu'

	Bassa Vah
	'bass'

	Batak
	'batk'

	Bengali
	'beng'

	Bengali v.2
	'bng2'

	Bhaiksuki
	'bhks'

	Bopomofo
	'bopo'

	Brahmi
	'brah'

	Braille
	'brai'

	Buginese
	'bugi'

	Buhid
	'buhd'

	Byzantine Music
	'byzm'

	Canadian Syllabics
	'cans'

	Carian
	'cari'

	Caucasian Albanian
	'aghb'

	Chakma
	'cakm'

	Cham
	'cham'

	Cherokee
	'cher'

	Chorasmian
	'chrs'

	CJK Ideographic
	'hani'

	Coptic
	'copt'

	Cypriot Syllabary
	'cprt'

	Cyrillic
	'cyrl'

	Default
	'DFLT'

	Deseret
	'dsrt'

	Devanagari
	'deva'

	Devanagari v.2
	'dev2'

	Dives Akuru
	'diak'

	Dogra
	'dogr'

	Duployan
	'dupl'

	Egyptian hieroglyphs
	'egyp'

	Elbasan
	'elba'

	Elymaic
	'elym'

	Ethiopic
	'ethi'

	Georgian
	'geor'

	Glagolitic
	'glag'

	Gothic
	'goth'

	Grantha
	'gran'

	Greek
	'grek'

	Gujarati
	'gujr'

	Gujarati v.2
	'gjr2'

	Gunjala Gondi
	'gong'

	Gurmukhi
	'guru'

	Gurmukhi v.2
	'gur2'

	Hangul
	'hang'

	Hangul Jamo
	'jamo'

	Hanifi Rohingya
	'rohg'

	Hanunoo
	'hano'

	Hatran
	'hatr'

	Hebrew
	'hebr'

	Hiragana
	'kana'

	Imperial Aramaic
	'armi'

	Inscriptional Pahlavi
	'phli'

	Inscriptional Parthian
	'prti'

	Javanese
	'java'

	Kaithi
	'kthi'

	Kannada
	'knda'

	Kannada v.2
	'knd2'

	Katakana
	'kana'

	Kayah Li
	'kali'

	Kharosthi
	'khar'

	Khitan Small Script
	'kits'

	Khmer
	'khmr'

	Khojki
	'khoj'

	Khudawadi
	'sind'

	Lao
	'lao '

	Latin
	'latn'

	Lepcha
	'lepc'

	Limbu
	'limb'

	Linear A
	'lina'

	Linear B
	'linb'

	Lisu (Fraser)
	'lisu'

	Lycian
	'lyci'

	Lydian
	'lydi'

	Mahajani
	'mahj'

	Makasar
	'maka'

	Malayalam
	'mlym'

	Malayalam v.2
	'mlm2'

	Mandaic, Mandaean
	'mand'

	Manichaean
	'mani'

	Masaram Gondi
	'gonm'

	Marchen
	'marc'

	Mathematical Alphanumeric Symbols
	'math'

	Medefaidrin (Oberi Okaime, Oberi Ɔkaimɛ)
	'medf'

	Meitei Mayek (Meithei, Meetei)
	'mtei'

	Mende Kikakui
	'mend'

	Meroitic Cursive
	'merc'

	Meroitic Hieroglyphs
	'mero'

	Miao
	'plrd'

	Modi
	'modi'

	Mongolian
	'mong'

	Mro
	'mroo'

	Multani
	'mult'

	Musical Symbols
	'musc'

	Myanmar
	'mymr'

	Myanmar v.2
	'mym2'

	Nabataean
	'nbat'

	Nandinagari
	'nand'

	Newa
	'newa'

	New Tai Lue
	'talu'

	Nyiakeng Puachue Hmong
	'hmnp'

	N'Ko
	'nko '

	Nüshu
	'nshu'

	Odia (formerly Oriya)
	'orya'

	Odia (formerly Oriya) v.2
	'ory2'

	Ogham
	'ogam'

	Ol Chiki
	'olck'

	Old Italic
	'ital'

	Old Hungarian
	'hung'

	Old North Arabian
	'narb'

	Old Permic
	'perm'

	Old Persian Cuneiform
	'xpeo'

	Old Sogdian
	'sogo'

	Old South Arabian
	'sarb'

	Old Turkic, Orkhon Runic
	'orkh'

	Osage
	'osge'

	Osmanya
	'osma'

	Pahawh Hmong
	'hmng'

	Palmyrene
	'palm'

	Pau Cin Hau
	'pauc'

	Phags-pa
	'phag'

	Phoenician
	'phnx'

	Psalter Pahlavi
	'phlp'

	Rejang
	'rjng'

	Runic
	'runr'

	Samaritan
	'samr'

	Saurashtra
	'saur'

	Sharada
	'shrd'

	Shavian
	'shaw'

	Siddham
	'sidd'

	Sign Writing
	'sgnw'

	Sinhala
	'sinh'

	Sogdian
	'sogd'

	Sora Sompeng
	'sora'

	Soyombo
	'soyo'

	Sumero-Akkadian Cuneiform
	'xsux'

	Sundanese
	'sund'

	Syloti Nagri
	'sylo'

	Syriac
	'syrc'

	Tagalog
	'tglg'

	Tagbanwa
	'tagb'

	Tai Le
	'tale'

	Tai Tham (Lanna)
	'lana'

	Tai Viet
	'tavt'

	Takri
	'takr'

	Tamil
	'taml'

	Tamil v.2
	'tml2'

	Tangut
	'tang'

	Telugu
	'telu'

	Telugu v.2
	'tel2'

	Thaana
	'thaa'

	Thai
	'thai'

	Tibetan
	'tibt'

	Tifinagh
	'tfng'

	Tirhuta
	'tirh'

	Ugaritic Cuneiform
	'ugar'

	Vai
	'vai '

	Wancho
	'wcho'

	Warang Citi
	'wara'

	Yezidi
	'yezi'

	Yi
	'yi '

	Zanabazar Square (Zanabazarin Dörböljin Useg, Xewtee Dörböljin Bicig, Horizontal Square Script)
	'zanb'

6.4.2
Replace the Language systems and tags table with the following:

	Language System
	Language System Tag
	Corresponding ISO 639 ID (if applicable)

	Abaza
	'ABA '
	abq

	Abkhazian
	'ABK '
	abk

	Acholi
	'ACH '
	ach

	Achi
	'ACR '
	acr

	Adyghe
	'ADY '
	ady

	Afrikaans
	'AFK '
	afr

	Afar
	'AFR '
	aar

	Agaw
	'AGW '
	ahg

	Aiton
	'AIO '
	aio

	Akan
	'AKA '
	aka, fat, twi

	Batak Angkola
	'AKB '
	akb

	Alsatian
	'ALS '
	gsw

	Altai
	'ALT '
	atv, alt

	Amharic
	'AMH '
	amh

	Anglo-Saxon
	'ANG '
	ang

	Phonetic transcription—Americanist conventions
	APPH
	

	Arabic
	'ARA '
	ara

	Aragonese
	'ARG '
	arg

	Aari
	'ARI '
	aiw

	Rakhine
	'ARK '
	mhv, rmz, rki

	Assamese
	'ASM '
	asm

	Asturian
	'AST '
	ast

	Athapaskan languages
	'ATH '
	aht, apa, apk, apj, apl, apm, apw, ath, bea, sek, bcr, caf, chp, clc, coq, crx, ctc, den, dgr, gce, gwi, haa, hoi, hup, ing, kkz, koy, ktw, kuu, mvb, nav, qwt, scs, srs, taa, tau, tcb, tce, tfn, tgx, tht, tol, ttm, tuu, txc, wlk, xup, xsl

	Avatime
	'AVN '
	avn

	Avar
	'AVR '
	ava

	Awadhi
	'AWA '
	awa

	Aymara
	'AYM '
	aym

	Torki
	'AZB '
	azb

	Azerbaijani
	'AZE '
	aze

	Badaga
	'BAD '
	bfq

	Banda
	BAD0
	bad, bbp, bfl, bjo, bpd, bqk, gox, kuw, liy, lna, lnl, mnh, nue, nuu, tor, yaj, zmz

	Baghelkhandi
	'BAG '
	bfy

	Balkar
	'BAL '
	krc

	Balinese
	'BAN '
	ban

	Bavarian
	'BAR '
	bar

	Baulé
	'BAU '
	bci

	Batak Toba
	'BBC '
	bbc

	Berber
	'BBR '
	auj, ber, cnu, gha, gho, grr, jbe, jbn, kab, mzb, oua, rif, sds, shi, shy, siz, sjs, swn, taq, tez, thv, thz, tia, tjo, tmh, ttq, tzm, zen, zgh

	Bench
	'BCH '
	bcq

	Bible Cree
	'BCR '
	

	Bandjalang
	'BDY '
	bdy

	Belarussian
	'BEL '
	bel

	Bemba
	'BEM '
	bem

	Bengali
	'BEN '
	ben

	Haryanvi
	'BGC '
	bgc

	Bagri
	'BGQ '
	bgq

	Bulgarian
	'BGR '
	bul

	Bhili
	'BHI '
	bhi, bhb

	Bhojpuri
	'BHO '
	bho

	Bikol
	'BIK '
	bik, bhk, bcl, bto, cts, bln, fbl, lbl, rbl, ubl

	Bilen
	'BIL '
	byn

	Bislama
	'BIS '
	bis

	Kanauji
	'BJJ '
	bjj

	Blackfoot
	'BKF '
	bla

	Baluchi
	'BLI '
	bal

	Pa’o Karen
	'BLK '
	blk

	Balante
	'BLN '
	bjt, ble

	Balti
	'BLT '
	bft

	Bambara (Bamanankan)
	'BMB '
	bam

	Bamileke
	'BML '
	bai, bbj, bko, byv, fmp, jgo, nla, nnh, nnz, nwe, xmg, ybb

	Bosnian
	'BOS '
	bos

	Bishnupriya Manipuri
	'BPY '
	bpy

	Breton
	'BRE '
	bre

	Brahui
	'BRH '
	brh

	Braj Bhasha
	'BRI '
	bra

	Burmese
	'BRM '
	mya

	Bodo
	'BRX '
	brx

	Bashkir
	'BSH '
	bak

	Burushaski
	'BSK '
	bsk

	Batak Dairi (Pakpak)
	'BTD '
	btd

	Beti
	'BTI '
	btb, beb, bum, bxp, eto, ewo, mct

	Batak languages
	'BTK '
	akb, bbc, btd, btk, btm, bts, btx, btz

	Batak Mandailing
	'BTM '
	btm

	Batak Simalungun
	'BTS '
	bts

	Batak Karo
	'BTX '
	btx

	Batak Alas-Kluet
	'BTZ '
	btz

	Bugis
	'BUG '
	bug

	Medumba
	'BYV '
	byv

	Kaqchikel
	'CAK '
	cak

	Catalan
	'CAT '
	cat

	Zamboanga Chavacano
	'CBK '
	cbk

	Chinantec
	CCHN
	cco, chj, chq, chz, cle, cnl, cnt, cpa, csa, cso, cte, ctl, cuc, cvn

	Cebuano
	'CEB '
	ceb

	Chiga
	'CGG '
	cgg

	Chamorro
	'CHA '
	cha

	Chechen
	'CHE '
	che

	Chaha Gurage
	'CHG '
	sgw

	Chattisgarhi
	'CHH '
	hne

	Chichewa (Chewa, Nyanja)
	'CHI '
	nya

	Chukchi
	'CHK '
	ckt

	Chuukese
	CHK0
	chk

	Choctaw
	'CHO '
	cho

	Chipewyan
	'CHP '
	chp

	Cherokee
	'CHR '
	chr

	Chuvash
	'CHU '
	chv

	Cheyenne
	'CHY '
	chy

	Western Cham
	'CJA '
	cja

	Eastern Cham
	'CJM '
	cjm

	Comorian
	'CMR '
	swb, wlc, wni, zdj

	Coptic
	'COP '
	cop

	Cornish
	'COR '
	cor

	Corsican
	'COS '
	cos

	Creoles
	'CPP '
	abs, acf, afs, aig, aoa, bah, bew, bis, bjs, bpl, bpq, brc, bxo, bzj, bzk, cbk, ccl, ccm, chn, cks, cpe, cpf, cpi, cpp, cri, crp, crs, dcr, dep, djk, fab, fng, fpe, gac, gcf, gcl, gcr, gib, goq, gpe, gul, gyn, hat, hca, hmo, hwc, icr, idb, ihb, jam, jvd, kcn, kea, kmv, kri, kww, lir, lou, lrt, max, mbf, mcm, mfe, mfp, mkn, mod, msi, mud, mzs, nag, nef, ngm, njt, onx, oor, pap, pcm, pea, pey, pga, pih, pis, pln, pml, pmy, pov, pre, rcf, rop, scf, sci, skw, srm, srn, sta, svc, tas, tch, tcs, tgh, tmg, tpi, trf, tvy, uln, vic, vkp, wes, xmm

	Cree
	'CRE '
	cre

	Carrier
	'CRR '
	crx, caf

	Crimean Tatar
	'CRT '
	crh

	Kashubian
	'CSB '
	csb

	Church Slavonic
	'CSL '
	chu

	Czech
	'CSY '
	ces

	Chittagonian
	'CTG '
	ctg

	San Blas Kuna
	'CUK '
	cuk

	Dagbani
	'DAG '
	dag

	Danish
	'DAN '
	dan

	Dargwa
	'DAR '
	dar

	Dayi
	'DAX '
	dax

	Woods Cree
	'DCR '
	cwd

	German
	'DEU '
	deu

	Dogri (individual language)
	'DGO '
	dgo

	Dogri (macrolanguage)
	'DGR '
	doi

	Dhangu
	'DHG '
	dhg

	Divehi (Dhivehi, Maldivian)
	'DHV ' (deprecated)
	div

	Dimli
	'DIQ '
	diq

	Divehi (Dhivehi, Maldivian)
	'DIV '
	div

	Zarma
	'DJR '
	dje

	Djambarrpuyngu
	DJR0
	djr

	Dangme
	'DNG '
	ada

	Dan
	'DNJ '
	dnj

	Dinka
	'DNK '
	din

	Dari
	'DRI '
	prs

	Dhuwal
	'DUJ '
	duj, dwu, dwy

	Dungan
	'DUN '
	dng

	Dzongkha
	'DZN '
	dzo

	Ebira
	'EBI '
	igb

	Eastern Cree
	'ECR '
	crj, crl

	Edo
	'EDO '
	bin

	Efik
	'EFI '
	efi

	Greek
	'ELL '
	ell

	Eastern Maninkakan
	'EMK '
	emk

	English
	'ENG '
	eng

	Erzya
	'ERZ '
	myv

	Spanish
	'ESP '
	spa

	Central Yupik
	'ESU '
	esu

	Estonian
	'ETI '
	est

	Basque
	'EUQ '
	eus

	Evenki
	'EVK '
	evn

	Even
	'EVN '
	eve

	Ewe
	'EWE '
	ewe

	French Antillean
	'FAN '
	acf

	Fang
	FAN0
	fan

	Persian
	'FAR '
	fas

	Fanti
	'FAT '
	fat

	Finnish
	'FIN '
	fin

	Fijian
	'FJI '
	fij

	Dutch (Flemish)
	'FLE '
	vls

	Fe’fe’
	'FMP '
	fmp

	Forest Enets
	'FNE '
	enf

	Fon
	'FON '
	fon

	Faroese
	'FOS '
	fao

	French
	'FRA '
	fra

	Cajun French
	'FRC '
	frc

	Frisian
	'FRI '
	fry

	Friulian
	'FRL '
	fur

	Arpitan
	'FRP '
	frp

	Futa
	'FTA '
	fuf

	Fulah
	'FUL '
	ful

	Nigerian Fulfulde
	'FUV '
	fuv

	Ga
	'GAD '
	gaa

	Scottish Gaelic (Gaelic)
	'GAE '
	gla

	Gagauz
	'GAG '
	gag

	Galician
	'GAL '
	glg

	Garshuni
	'GAR '
	

	Garhwali
	'GAW '
	gbm

	Geez
	'GEZ '
	gez

	Githabul
	'GIH '
	gih

	Gilyak
	'GIL '
	niv

	Kiribati (Gilbertese)
	GIL0
	gil

	Kpelle (Guinea)
	'GKP '
	gkp

	Gilaki
	'GLK '
	glk

	Gumuz
	'GMZ '
	guk

	Gumatj
	'GNN '
	gnn

	Gogo
	'GOG '
	gog

	Gondi
	'GON '
	gon

	Greenlandic
	'GRN '
	kal

	Garo
	'GRO '
	grt

	Guarani
	'GUA '
	grn

	Wayuu
	'GUC '
	guc

	Gupapuyngu
	'GUF '
	guf

	Gujarati
	'GUJ '
	guj

	Gusii
	'GUZ '
	guz

	Haitian (Haitian Creole)
	'HAI '
	hat

	Halam (Falam Chin)
	'HAL '
	cfm

	Harauti
	'HAR '
	hoj

	Hausa
	'HAU '
	hau

	Hawaiian
	'HAW '
	haw

	Haya
	'HAY '
	hay

	Hazaragi
	'HAZ '
	haz

	Hammer-Banna
	'HBN '
	amf

	Herero
	'HER '
	her

	Hiligaynon
	'HIL '
	hil

	Hindi
	'HIN '
	hin

	High Mari
	'HMA '
	mrj

	Hmong
	'HMN '
	hmn

	Hiri Motu
	'HMO '
	hmo

	Hindko
	'HND '
	hno, hnd

	Ho
	'HO '
	hoc

	Harari
	'HRI '
	har

	Croatian
	'HRV '
	hrv

	Hungarian
	'HUN '
	hun

	Armenian
	'HYE '
	hye, hyw

	Armenian East
	HYE0
	hye

	Iban
	'IBA '
	iba

	Ibibio
	'IBB '
	ibb

	Igbo
	'IBO '
	ibo

	Ido
	'IDO '
	ido

	Ijo languages
	'IJO '
	iby, ijc, ije, ijn, ijo, ijs, nkx, okd, okr, orr

	Interlingue
	'ILE '
	ile

	Ilokano
	'ILO '
	ilo

	Interlingua
	'INA '
	ina

	Indonesian
	'IND '
	ind

	Ingush
	'ING '
	inh

	Inuktitut
	'INU '
	iku

	Inupiat
	'IPK '
	ipk

	Phonetic transcription—IPA conventions
	IPPH
	

	Irish
	'IRI '
	gle

	Irish Traditional
	'IRT '
	gle

	Icelandic
	'ISL '
	isl

	Inari Sami
	'ISM '
	smn

	Italian
	'ITA '
	ita

	Hebrew
	'IWR '
	heb

	Jamaican Creole
	'JAM '
	jam

	Japanese
	'JAN '
	jpn

	Javanese
	'JAV '
	jav

	Lojban
	'JBO '
	jbo

	Krymchak
	'JCT '
	jct

	Yiddish
	'JII '
	yid

	Ladino
	'JUD '
	lad

	Jula
	'JUL '
	dyu

	Kabardian
	'KAB '
	kbd

	Kabyle
	KAB0
	kab

	Kachchi
	'KAC '
	kfr

	Kalenjin
	'KAL '
	kln

	Kannada
	'KAN '
	kan

	Karachay
	'KAR '
	krc

	Georgian
	'KAT '
	kat

	Kawi (Old Javanese)
	‘KAW ’
	kaw

	Kazakh
	'KAZ '
	kaz

	Makonde
	'KDE '
	kde

	Kabuverdianu (Crioulo)
	'KEA '
	kea

	Kebena
	'KEB '
	ktb

	Kekchi
	'KEK '
	kek

	Khutsuri Georgian
	'KGE '
	kat

	Khakass
	'KHA '
	kjh

	Khanty-Kazim
	'KHK '
	kca

	Khmer
	'KHM '
	khm

	Khanty-Shurishkar
	'KHS '
	kca

	Khamti Shan
	'KHT '
	kht

	Khanty-Vakhi
	'KHV '
	kca

	Khowar
	'KHW '
	khw

	Kikuyu (Gikuyu)
	'KIK '
	kik

	Kirghiz (Kyrgyz)
	'KIR '
	kir

	Kisii
	'KIS '
	kqs, kss

	Kirmanjki
	'KIU '
	kiu

	Southern Kiwai
	'KJD '
	kjd

	Eastern Pwo Karen
	'KJP '
	kjp

	Bumthangkha
	'KJZ '
	kjz

	Kokni
	'KKN '
	kex

	Kalmyk
	'KLM '
	xal

	Kamba
	'KMB '
	kam

	Kumaoni
	'KMN '
	kfy

	Komo
	'KMO '
	kmw

	Komso
	'KMS '
	kxc

	Khorasani Turkic
	'KMZ '
	kmz

	Kanuri
	'KNR '
	kau

	Kodagu
	'KOD '
	kfa

	Korean Old Hangul
	'KOH '
	kor, okm

	Konkani
	'KOK '
	kok

	Komi
	'KOM '
	kom

	Kikongo
	'KON '
	ktu

	Kongo
	KON0
	kon

	Komi-Permyak
	'KOP '
	koi

	Korean
	'KOR '
	kor

	Kosraean
	'KOS '
	kos

	Komi-Zyrian
	'KOZ '
	kpv

	Kpelle
	'KPL '
	kpe

	Krio
	'KRI '
	kri

	Karakalpak
	'KRK '
	kaa

	Karelian
	'KRL '
	krl

	Karaim
	'KRM '
	kdr

	Karen
	'KRN '
	blk, bwe, eky, ghk, jkm, jkp, kar, kjp, kjt, ksw, kvl, kvq, kvt, kvu, kvy, kxf, kxk, kyu, pdu, pwo, pww, wea

	Koorete
	'KRT '
	kqy

	Kashmiri
	'KSH '
	kas

	Ripuarian
	KSH0
	ksh

	Khasi
	'KSI '
	kha

	Kildin Sami
	'KSM '
	sjd

	S’gaw Karen
	'KSW '
	ksw

	Kuanyama
	'KUA '
	kua

	Kui
	'KUI '
	kxu

	Kulvi
	'KUL '
	kfx

	Kumyk
	'KUM '
	kum

	Kurdish
	'KUR '
	kur

	Kurukh
	'KUU '
	kru

	Kuy
	'KUY '
	kdt

	Koryak
	'KYK '
	kpy

	Western Kayah
	'KYU '
	kyu

	Ladin
	'LAD '
	lld

	Lahuli
	'LAH '
	bfu

	Lak
	'LAK '
	lbe

	Lambani
	'LAM '
	lmn

	Lao
	'LAO '
	lao

	Latin
	'LAT '
	lat

	Laz
	'LAZ '
	lzz

	L-Cree
	'LCR '
	crm

	Ladakhi
	'LDK '
	lbj

	Lelemi
	'LEF '
	lef

	Lezgi
	'LEZ '
	lez

	Ligurian
	'LIJ '
	lij

	Limburgish
	'LIM '
	lim

	Lingala
	'LIN '
	lin

	Lisu
	'LIS '
	lis

	Lampung
	'LJP '
	ljp

	Laki
	'LKI '
	lki

	Low Mari
	'LMA '
	mhr

	Limbu
	'LMB '
	lif

	Lombard
	'LMO '
	lmo

	Lomwe
	'LMW '
	ngl

	Loma
	'LOM '
	lom

	Luri
	'LRC '
	lrc, luz, bqi, zum

	Lower Sorbian
	'LSB '
	dsb

	Lule Sami
	'LSM '
	smj

	Lithuanian
	'LTH '
	lit

	Luxembourgish
	'LTZ '
	ltz

	Luba-Lulua
	'LUA '
	lua

	Luba-Katanga
	'LUB '
	lub

	Ganda
	'LUG '
	lug

	Luyia
	'LUH '
	luy

	Luo
	'LUO '
	luo

	Latvian
	'LVI '
	lav

	Madura
	'MAD '
	mad

	Magahi
	'MAG '
	mag

	Marshallese
	'MAH '
	mah

	Majang
	'MAJ '
	mpe

	Makhuwa
	'MAK '
	vmw

	Malayalam
	'MAL '
	mal

	Mam
	'MAM '
	mam

	Mansi
	'MAN '
	mns

	Mapudungun
	'MAP '
	arn

	Marathi
	'MAR '
	mar

	Marwari
	'MAW '
	mwr, dhd, rwr, mve, wry, mtr, swv

	Mbundu
	'MBN '
	kmb

	Mbo
	'MBO '
	mbo

	Manchu
	'MCH '
	mnc

	Moose Cree
	'MCR '
	crm

	Mende
	'MDE '
	men

	Mandar
	'MDR '
	mdr

	Me’en
	'MEN '
	mym

	Meru
	'MER '
	mer

	Pattani Malay
	'MFA '
	mfa

	Morisyen
	'MFE '
	mfe

	Minangkabau
	'MIN '
	min

	Mizo
	'MIZ '
	lus

	Macedonian
	'MKD '
	mkd

	Makasar
	'MKR '
	mak

	Kituba
	'MKW '
	mkw

	Male
	'MLE '
	mdy

	Malagasy
	'MLG '
	mlg

	Malinke
	'MLN '
	mlq

	Malayalam Reformed
	'MLR '
	mal

	Malay
	'MLY '
	msa

	Mandinka
	'MND '
	mnk

	Mongolian
	'MNG '
	mon

	Manipuri
	'MNI '
	mni

	Maninka
	'MNK '
	man, mnk, myq, mku, msc, emk, mwk, mlq

	Manx
	'MNX '
	glv

	Mohawk
	'MOH '
	moh

	Moksha
	'MOK '
	mdf

	Moldavian
	'MOL '
	mol

	Mon
	'MON '
	mnw

	Moroccan
	'MOR '
	

	Mossi
	'MOS '
	mos

	Maori
	'MRI '
	mri

	Maithili
	'MTH '
	mai

	Maltese
	'MTS '
	mlt

	Mundari
	'MUN '
	unr

	Muscogee
	'MUS '
	mus

	Mirandese
	'MWL '
	mwl

	Hmong Daw
	'MWW '
	mww

	Mayan
	'MYN '
	acr, agu, caa, cac, cak, chf, ckz, cob, ctu, emy, hus, itz, ixl, jac, kek, kjb, knj, lac, mam, mhc, mop, myn, poc, poh, quc, qum, quv, toj, ttc, tzh, tzj, tzo, usp, yua

	Mazanderani
	'MZN '
	mzn

	Naga-Assamese
	'NAG '
	nag

	Nahuatl
	'NAH '
	azd, azn, azz, nah, naz, nch, nci, ncj, ncl, ncx, ngu, nhc, nhe, nhg, nhi, nhk, nhm, nhn, nhp, nhq, nht, nhv, nhw, nhx, nhy, nhz, nlv, npl, nsu, nuz

	Nanai
	'NAN '
	gld

	Neapolitan
	'NAP '
	nap

	Naskapi
	'NAS '
	nsk

	Nauruan
	'NAU '
	nau

	Navajo
	'NAV '
	nav

	N-Cree
	'NCR '
	csw

	Ndebele
	'NDB '
	nbl, nde

	Ndau
	'NDC '
	ndc

	Ndonga
	'NDG '
	ndo

	Low Saxon
	'NDS '
	nds

	Nepali
	'NEP '
	nep

	Newari
	'NEW '
	new

	Ngbaka
	'NGA '
	nga

	Nagari
	'NGR '
	

	Norway House Cree
	'NHC '
	csw

	Nisi
	'NIS '
	dap, njz, tgj

	Niuean
	'NIU '
	niu

	Nyankole
	'NKL '
	nyn

	N’Ko
	'NKO '
	nqo

	Dutch
	'NLD '
	nld

	Nimadi
	'NOE '
	noe

	Nogai
	'NOG '
	nog

	Norwegian
	'NOR '
	nob

	Novial
	'NOV '
	nov

	Northern Sami
	'NSM '
	sme

	Northern Sotho
	'NSO '
	nso

	Northern Tai
	'NTA '
	nod

	Esperanto
	'NTO '
	epo

	Nyamwezi
	'NYM '
	nym

	Norwegian Nynorsk (Nynorsk, Norwegian)
	'NYN '
	nno

	Mbembe Tigon
	'NZA '
	nza

	Occitan
	'OCI '
	oci

	Oji-Cree
	'OCR '
	ojs

	Ojibway
	'OJB '
	oji

	Odia (formerly Oriya)
	'ORI '
	ori

	Oromo
	'ORO '
	orm

	Ossetian
	'OSS '
	oss

	Palestinian Aramaic
	'PAA '
	sam

	Pangasinan
	'PAG '
	pag

	Pali
	'PAL '
	pli

	Pampangan
	'PAM '
	pam

	Punjabi
	'PAN '
	pan

	Palpa
	'PAP '
	plp

	Papiamentu
	PAP0
	pap

	Pashto
	'PAS '
	pus

	Palauan
	'PAU '
	pau

	Bouyei
	'PCC '
	pcc

	Picard
	'PCD '
	pcd

	Pennsylvania German
	'PDC '
	pdc

	Polytonic Greek
	'PGR '
	ell

	Phake
	'PHK '
	phk

	Norfolk
	'PIH '
	pih

	Filipino
	'PIL '
	fil

	Palaung
	'PLG '
	pce, rbb, pll

	Polish
	'PLK '
	pol

	Piemontese
	'PMS '
	pms

	Western Panjabi
	'PNB '
	pnb

	Pocomchi
	'POH '
	poh

	Pohnpeian
	'PON '
	pon

	Provençal / Old Provençal
	'PRO '
	pro

	Portuguese
	'PTG '
	por

	Western Pwo Karen
	'PWO '
	pwo

	Chin
	'QIN '
	bgr, biu, cek, cey, cfm, cbl, cka, ckn, clj, clt, cmr, cnb, cnh, cnk, cnw, csh, csj, csv, csy, ctd, cth, czt, dao, gnb, hlt, hmr, hra, lus, mrh, mwq, pck, pkh, pub, ral, rtc, sch, sez, shl, smt, tcp, tcz, vap, weu, zom, zyp

	K’iche’
	'QUC '
	quc

	Quechua (Bolivia)
	'QUH '
	quh

	Quechua
	'QUZ '
	quz

	Quechua (Ecuador)
	'QVI '
	qvi

	Quechua (Peru)
	'QWH '
	qwh

	Rajasthani
	'RAJ '
	raj

	Rarotongan
	'RAR '
	rar

	Russian Buriat
	'RBU '
	bxr

	R-Cree
	'RCR '
	atj

	Rejang
	'REJ '
	rej

	Riang
	'RIA '
	ria

	Tarifit
	'RIF '
	rif

	Ritarungo
	'RIT '
	rit

	Arakwal
	'RKW '
	rkw

	Romansh
	'RMS '
	roh

	Vlax Romani
	'RMY '
	rmy

	Romanian
	'ROM '
	ron

	Romany
	'ROY '
	rom

	Rusyn
	'RSY '
	rue

	Rotuman
	'RTM '
	rtm

	Kinyarwanda
	'RUA '
	kin

	Rundi
	'RUN '
	run

	Aromanian
	'RUP '
	rup

	Russian
	'RUS '
	rus

	Sadri
	'SAD '
	sck

	Sanskrit
	'SAN '
	san

	Sasak
	'SAS '
	sas

	Santali
	'SAT '
	sat

	Sayisi
	'SAY '
	chp

	Sicilian
	'SCN '
	scn

	Scots
	'SCO '
	sco

	North Slavey
	'SCS '
	scs

	Sekota
	'SEK '
	xan

	Selkup
	'SEL '
	sel

	Old Irish
	'SGA '
	sga

	Sango
	'SGO '
	sag

	Samogitian
	'SGS '
	sgs

	Tachelhit
	'SHI '
	shi

	Shan
	'SHN '
	shn

	Sibe
	'SIB '
	sjo

	Sidamo
	'SID '
	sid

	Silte Gurage
	'SIG '
	xst, stv, wle

	Skolt Sami
	'SKS '
	sms

	Slovak
	'SKY '
	slk

	Slavey
	'SLA '
	den, scs, xsl

	Slovenian
	'SLV '
	slv

	Somali
	'SML '
	som

	Samoan
	'SMO '
	smo

	Sena
	'SNA '
	seh

	Shona
	SNA0
	sna

	Sindhi
	'SND '
	snd

	Sinhala (Sinhalese)
	'SNH '
	sin

	Soninke
	'SNK '
	snk

	Sodo Gurage
	'SOG '
	gru

	Songe
	'SOP '
	sop

	Southern Sotho
	'SOT '
	sot

	Albanian
	'SQI '
	sqi

	Serbian
	'SRB '
	cnr, srp

	Sardinian
	'SRD '
	srd

	Saraiki
	'SRK '
	skr

	Serer
	'SRR '
	srr

	South Slavey
	'SSL '
	xsl

	Southern Sami
	'SSM '
	sma

	Saterland Frisian
	'STQ '
	stq

	Sukuma
	'SUK '
	suk

	Sundanese
	'SUN '
	sun

	Suri
	'SUR '
	suq

	Svan
	'SVA '
	sva

	Swedish
	'SVE '
	swe

	Swadaya Aramaic
	'SWA '
	aii

	Swahili
	'SWK '
	swa

	Swati
	'SWZ '
	ssw

	Sutu
	'SXT '
	ngo, xnj, xnq

	Upper Saxon
	'SXU '
	sxu

	Sylheti
	'SYL '
	syl

	Syriac
	'SYR '
	aii, amw, cld, syc, syr, tru

	Syriac, Estrangela script-variant (equivalent to ISO 15924 'Syre')
	SYRE
	syc, syr

	Syriac, Western script-variant (equivalent to ISO 15924 'Syrj')
	SYRJ
	syc, syr

	Syriac, Eastern script-variant (equivalent to ISO 15924 'Syrn')
	SYRN
	syc, syr

	Silesian
	'SZL '
	szl

	Tabasaran
	'TAB '
	tab

	Tajiki
	'TAJ '
	tgk

	Tamil
	'TAM '
	tam

	Tatar
	'TAT '
	tat

	TH-Cree
	'TCR '
	cwd

	Dehong Dai
	'TDD '
	tdd

	Telugu
	'TEL '
	tel

	Tetum
	'TET '
	tet

	Tagalog
	'TGL '
	tgl

	Tongan
	'TGN '
	ton

	Tigre
	'TGR '
	tig

	Tigrinya
	'TGY '
	tir

	Thai
	'THA '
	tha

	Tahitian
	'THT '
	tah

	Tibetan
	'TIB '
	bod

	Tiv
	'TIV '
	tiv

	Turkmen
	'TKM '
	tuk

	Tamashek
	'TMH '
	taq, thv, thz, tmh, ttq

	Temne
	'TMN '
	tem

	Tswana
	'TNA '
	tsn

	Tundra Enets
	'TNE '
	enh

	Tonga
	'TNG '
	toi

	Todo
	'TOD '
	xal

	Toma
	TOD0
	tod

	Tok Pisin
	'TPI '
	tpi

	Turkish
	'TRK '
	tur

	Tsonga
	'TSG '
	tso

	Tshangla
	'TSJ '
	tsj

	Turoyo Aramaic
	'TUA '
	tru

	Tumbuka
	'TUL '
	tcy

	Tulu
	'TUM '
	tum

	Tuvin
	'TUV '
	tyv

	Tuvalu
	'TVL '
	tvl

	Twi
	'TWI '
	twi

	Tày
	'TYZ '
	tyz

	Tamazight
	'TZM '
	tzm

	Tzotzil
	'TZO '
	tzo

	Udmurt
	'UDM '
	udm

	Ukrainian
	'UKR '
	ukr

	Umbundu
	'UMB '
	umb

	Urdu
	'URD '
	urd

	Upper Sorbian
	'USB '
	hsb

	Uyghur
	'UYG '
	uig

	Uzbek
	'UZB '
	uzb

	Venetian
	'VEC '
	vec

	Venda
	'VEN '
	ven

	Vietnamese
	'VIT '
	vie

	Volapük
	'VOL '
	vol

	Võro
	'VRO '
	vro

	Wa
	'WA '
	wbm

	Wagdi
	'WAG '
	wbr

	Waray-Waray
	'WAR '
	war

	Waci Gbe
	'WCI '
	wci

	West-Cree
	'WCR '
	crk

	Welsh
	'WEL '
	cym

	Wolof
	'WLF '
	wol

	Walloon
	'WLN '
	wln

	Mewati
	'WTM '
	wtm

	Lü
	'XBD '
	khb

	Xhosa
	'XHS '
	xho

	Minjangbal
	'XJB '
	xjb

	Khengkha
	'XKF '
	xkf

	Soga
	'XOG '
	xog

	Kpelle (Liberia)
	'XPE '
	xpe

	Sakha
	'YAK '
	sah

	Yao
	'YAO '
	yao

	Yapese
	'YAP '
	yap

	Yoruba
	'YBA '
	yor

	Y-Cree
	'YCR '
	crj, crk, crl

	Yi Classic
	'YIC '
	

	Yi Modern
	'YIM '
	iii

	Zealandic
	'ZEA '
	zea

	Standard Moroccan Tamazight
	'ZGH '
	zgh

	Zhuang
	'ZHA '
	zha

	Chinese, Traditional, Hong Kong SAR
	'ZHH '
	zho

	Chinese, Phonetic
	'ZHP '
	zho

	Chinese, Simplified
	'ZHS '
	zho

	Chinese, Traditional
	'ZHT '
	zho

	Chinese, Traditional, Macao SAR
	'ZHTM'
	zho

	Zande
	'ZND '
	zne

	Zulu
	'ZUL '
	zul

	Zazaki
	'ZZA '
	zza

7.1.7
In the end of the sub-clause 7.1.7 “Algorithm for interpolation of instance values”, add the following two paragraphs:
An implementation-determined representation may be used during calculation and for the final result (interpolatedValue). In calculation of scalars (S, AS) and of interpolated values (scaledDelta, netAjustment, interpolatedValue), at least 16 fractional bits of precision should be maintained. If required for the internal representation, rRounding should be done only when the final result is used, and may retain greater fractional bit-depth than that of the data type of the item to which deltas are applied.
When scaled deltas are applied to a default value, the possibility of overflow exists. The numeric range used in calculation must shall be at least that of the data type of the item to which deltas are applied; for example, at least [-32768, 32767] when applying scaled deltas to an FWORD value. Also, larger ranges should be allowed for during calculation to avoid any possible overflow at any point during calculation, and to ensure that the order in which deltas are applied does not affect the final result. Saturation arithmetic shall be used: values shall not wrap from maximum to minimum values, or vice versa.

7.2.1 “COLR table and OFF Font Variations”
Replace the fifth paragraph with the following:
A variable font includes a large number of deltas. At the highest level, deltas are organized into collections for different target item sets:
· Deltas for positions of points of a ‘glyf’ table are stored in a ‘gvar’ table.
· Deltas for positions of points of a ‘CFF2’ table are stored within the ‘CFF2’ table.
· Deltas for CVT values are stored in a ‘cvar’ table.
· Deltas for glyph metrics in an ‘hmtx’ table are stored in an ‘HVAR’ table; and deltas for glyph metrics in a ‘vmtx’ or ‘VORG’ table are stored in a ‘VVAR’ table.
· Deltas for anchor positions in ‘GPOS’ lookups and other items used in ‘GDEF’, ‘GPOS’ or ‘JSTF’ tables are stored within variation data contained in the ‘GDEF’ table.
· Deltas for font-wide metrics and other items from the ‘OS/2’, ‘hhea’, ‘gasp’ or other tables are stored in an ‘MVAR’ table.
· Deltas for values in other tables are stored in the respective table: deltas for baseline metrics in the ‘BASE’ table and for various items in the ‘COLR’ table are stored in each table.

7.2.3.
Delete the fourth paragraph (starting with “Variation data is comprised…”).
Add the a new sub-clause 7.2.3.1 “Associating target items to variation data” after the third paragraph (replacing the deleted paragraph) with the following text:
7.2.3.1 Associating target items to variation data
Variation data is comprised of delta adjustment values that apply to particular target items. Some mechanism is needed to associate delta values with target items. In the item variation store, a block of delta values has an implicit delta-set index, and separate data outside the item variation store is provided that indicates the delta-set index associated with a given target item. Depending on the parent table in which an item variation store is used, different means are used to provide these associations:
· In the MVAR table, an array of records identifies target data items in various other tables, along with the delta-set index for each respective item.
· In the HVAR and VVAR tables, the target data items are glyph metric arrays in the ‘hmtx’ and ‘vmtx’ tables. Mapping subtables in the HVAR and VVAR tables provide a mapping to delta-set indices. Glyph IDs are used to index into the mapping subtableSubtables in the HVAR and VVAR tables provide the mapping between the target data items and delta-set indices.
· In the COLR table, a mapping subtable is used, as in the HVAR and VVAR tables. Structures that support variable items provide a starting index into the mapping subtable, and use a slice of consecutive mapping entries.
· For the BASE, GDEF, GPOS, and JSTF tables, a target data item is associated with a delta-set index using a related VariationIndex table (6.2.8) within the same subtable that contains the target item.
· In the COLR table, target data items are specified in structures that combine a basic data type, such FWORD, with a delta-set index.
The structures used in the COLR table currently are used only in that table but may be used in other tables in future versions, and so are defined here as common formats. Structures are defined to wrap the FWORD, UFWORD, F2DOT14 and Fixed basic types.
NOTE	As described below, each delta-set index is represented as two index components, an outer index and an inner index, corresponding to a two-level organizational hierarchy. This is described in detail below.
[bookmark: varfword]VarFWord
The FWORD type is used to represent coordinates in the glyph design grid. The VarFWord record is used to represent a coordinate that can be variable.
	Type
	Name
	Description

	FWORD
	coordinate
	

	uint16
	varOuterIndex
	

	uint16
	varInnerIndex
	

[bookmark: varufword]VarUFWord
The UFWORD type is used to represent distances in the glyph design grid. The VarUFWord record is used to represent a distance that can be variable.
	Type
	Name
	Description

	UFWORD
	distance
	

	uint16
	varOuterIndex
	

	uint16
	varInnerIndex
	

[bookmark: varf2dot14]VarF2Dot14
The F2DOT14 type is typically used to represent values that are inherently limited to a range of [-1, 1], or a range of [0, 1]. The VarF2Dot14 record is used to represent such a value that can be variable.
	Type
	Name
	Description

	F2DOT14
	value
	

	uint16
	varOuterIndex
	

	uint16
	varInnerIndex
	

In general, variation deltas are (logically) signed 16-bit integers, and in most cases, they are applied to signed 16-bit values (FWORDs) or unsigned 16-bit values (UFWORDs). In the COLR, HVAR and VVAR tables, DeltaSetIndexMap tables are used to provide the mapping to delta set indices. Two formats for the DeltaSetIndexMap are defined: format 0 uses a 16-bit count field, and so is limited to 65,535 entries; format 1 uses a 32-bit count field.When scaled deltas are applied to F2DOT14 values, the F2DOT14 value is treated like a 16-bit integer. (In this sense, the delta and the F2DOT14 value can be viewed as integer values in units of 1/16384ths.)
If the context in which the VarF2Dot14 is used constrains the valid range for the default value, then any variations by applying deltas are clipped to that range.
VarFixed
The Fixed type is intended for floating values, such as variation-space coordinates. The VarFixed record is used to represent such a value that can be variable.
	Type
	Name
	Description

	Fixed
	value
	

	uint16
	varOuterIndex
	

	uint16
	varInnerIndex
	

DeltaSetIndexMap format 0:
	Type
	Name
	Description

	uint8
	format
	DeltaSetIndexMap format, set to 0.

	uint8
	entryFormat
	A packed field that describes the compressed representation of delta-set indices. See details below.

	uint16
	mapCount
	The number of mapping entries.

	uint8
	mapData
[variable]
	The delta-set index mapping data. See details below.

DeltaSetIndexMap format 1:
	Type
	Name
	Description

	uint8
	format
	DeltaSetIndexMap format, set to 1.

	uint8
	entryFormat
	A packed field that describes the compressed representation of delta-set indices. See details below.

	uint32
	mapCount
	The number of mapping entries.

	uint8
	mapData
[variable]
	The delta-set index mapping data. See details below.

NOTE	In previous versions of this specification, only one format of the DeltaSetIndexMap table was defined, and it began with a single, 16-bit entryFormat field. That single 16-bit field has been subdivided into separate 8-bit format and entryFormat fields. In the prior definition, the high-order byte of the 16-bit field was reserved and set to zero. Thus, format 0 is backward compatible with the definition used in previous versions.
The mapCount field indicates the number of delta-set index mapping entries. The logical entries in the mapData array use a base-zero index. In the context in which a DeltaSetIndexMap table is used, if an index into the mapping array is used that is greater than or equal to mapCount, then the last logical entry of the mapping array is used.
Each mapping entry represents a delta-set outer-level index and inner-level index combination. Logically, each of these indices is a 16-bit, unsigned value. These are represented in a packed format that uses one, two, three or four bytes. The entryFormat field is a packed bitfield that describes the compressed representation used in the mapData field of the given DeltaSetIndexMap table. The format of the entryFormat field is as follows:
EntryFormat Field Masks:
	Mask
	Name
	Description

	0x0F
	INNER_INDEX_BIT_COUNT_MASK
	Mask for the low 4 bits, which give the count of bits minus one that are used in each entry for the inner-level index.

	0x30
	MAP_ENTRY_SIZE_MASK
	Mask for bits that indicate the size in bytes minus one of each entry.

	0xC0
	Reserved
	Reserved for future use — set to 0.

The innerBitCountMask and mapEntrySizeMask enable the inner index to range in size from 1 to 16 bits, and the outer index to range in size from 0 to 31 bits, with the combined size determined by the mapEntrySizeMask. The size of each mapping entry is ((entryFormat & mapEntrySizeMask) >> 4 + 1). The mapCount value gives the number of logical entries in the map data array; the total size of the map data array, in bytes, is entrySize * mapCount.
For a given entry, the outer-level and inner-level indices can be obtained as follows:
outerIndex = entry >> ((entryFormat & innerIndexBitCountMask) + 1)
innerIndex = entry & ((1 << ((entryFormat & innerIndexBitCountMask) + 1)) - 1)
For larger sets of variation data, such as may be needed for COLR, HVAR or VVAR tables, optimization of the indices data as well as the delta data may have a significant impact on overall size. Optimizing compilers may need to consider the impact on representation of indices in tandem as it optimizes the item variation store to achieve the best overall results.
While in most cases deltas are applied to 16-bit types, Fixed is a 32-bit (16.16) type and requires 32-bit deltas. The DeltaSet record used in the ItemVariationData subtable format can accommodate deltas that are, logically, either 16-bit or 32-bit. See the description of the ItemVariationData subtable(7.2.3.4) for details.
When scaled deltas are applied to Fixed values, the Fixed value is treated like a 32-bit integer. (In this sense, the delta and the Fixed value can be viewed as integer values in units of 1/65536ths.)
Insert a sub-clause heading, “7.2.3.2 Variation data”, after the newly-inserted text above, and before the paragraph beginning with “The ItemVariationStore table includes a variation region list…”. Re-number subsequent sub-clauses accordingly.
In the newly defined sub-clause 7.2.3.2, replace the last paragraph with the following:
A complete delta-set index involves an outer-level index into the ItemVariationData subtable array, plus an inner-level index to a delta-set row within that subtable. A special meaning is assigned to a delta-set index 0xFFFF/0xFFFF (that is, outer-level and inner-level portions are both 0xFFFF): this is used to indicate that there is no variation data for a given item. Functionally, this would be equivalent to referencing delta-set data consisting of only deltas of 0 for all regions.
As noted above, delta-set indices are stored outside the variation store. Different parent tables that use an item variation store will store indices in different ways, and may utilize different schemes for how to represent the indices in an efficient manner. For example, the ‘HVAR’ and ‘VVAR’ tables allow the outer and inner indices to be combined into one-byte, two-byte, three-byte or four-byte representations depending on the indexing requirements of the variation store. For larger sets of variation data, such as may be needed for ‘HVAR’ or ‘VVAR’ tables, optimization of the indices data as well as the delta data may have a significant impact on overall size. Optimizing compilers may need to consider the impact on representation of indices in tandem as it optimizes the item variation store to achieve the best overall results.
In 7.2.3.3 (previously, 7.2.3.1), “Variation regions”, replace the table VariationRegionList with the following:
VariationRegionList
	Type
	Name
	Description

	uint16
	axisCount
	The number of variation axes for this font. This must be the same number as axisCount in the ‘fvar’ table.

	uint16
	regionCount
	The number of variation region tables in the variation region list. Shall be less than 32,736.

	VariationRegion
	variationRegions
[regionCount]
	Array of variation regions.

The high-order bit of the regionCount field is reserved for future use, and shall be cleared.
In 7.2.3.4 (previously 7.2.3.2), “Item variation store and item variation data tables”, replace the entire content of the sub-clause with the following:
The item variation store table has the following structure.
ItemVariationStore table
	Type
	Name
	Description

	uint16
	format
	Set to 1.

	Offset32
	variationRegionListOffset
	Offset in bytes from the start of the item variation store to the variation region list

	uint16
	itemVariationDataCount
	The number of item variation data subtables.

	Offset32
	itemVariationDataOffsets
[itemVariationDataCount]
	Offsets in bytes from the start of the item variation store to each item variation data subtable.

The item variation store includes an offset to a variation region list and an array of offsets to item variation data subtables. A NULL offset in the array indicates that there is no item variation data subtable for that index into the array.
NOTE	Indices into the itemVariationDataOffsets array are stored in parent tables as delta-set “outer” indices with each such index having a corresponding “inner” index. If the outer index points to a NULL offset, then any inner index will be invalid and can be ignored: items associated with this index do not have any variation.
Each item variation data subtable includes deltas for some number of items, and some subset of regions. The regions are indicated by an array of indices into the variation region list.
ItemVariationData subtable
	Type
	Name
	Description

	uint16
	itemCount
	The number of delta sets for distinct items.

	uint16
	wordDeltaCount
	A packed field: the high bit is a flag—see details below.

	uint16
	regionIndexCount
	The number of variation regions referenced.

	uint16
	regionIndexes[regionCount]
	Array of indices into the variation region list for the regions referenced by this item variation data table.

	DeltaSet
	deltaSets[itemCount]
	Delta-set rows.

The wordDeltaCount field contains a packed value that includes a flag and a “word” delta count. The format of this value is as follows:
	Mask
	Name
	Description

	0x8000
	LONG_WORDS
	Flag indicating that “word” deltas are long (int32)

	0x7FFF
	WORD_DELTA_COUNT_MASK
	Count of “word” deltas

The representation of delta values uses a mix of long types (“words”) and short types. If the LONG_WORDS flag is set, deltas are represented using a mix of int32 and int16 values. If the flag is not set, deltas are presented using a mix of int16 and int8 values. See the description of the DeltaSet record below for additional details.
The count value indicated by WORD_DELTA_COUNT_MASK is a count of the number of deltas that use the long (“word”) representation, and shall be less than or equal to regionIndexCount.
The deltaSets array represents a logical two-dimensional table of delta values with itemCount rows and regionIndexCount columns. Rows in the table provide sets of deltas for particular target items, and columns correspond to regions of the variation space. Each DeltaSet record in the array represents one row of the delta-value table — one delta set.
DeltaSet record:
	Type
	Name
	Description

	int16 and int8 or
int32 and int16
	deltaData​[regionIndexCount]
	Variation delta values.

Logically, each DeltaSet record has regionIndexCount number of elements. The elements are represented using long and short types, as described above. These are either int16 and int8, or int32 and int16, according to whether the LONG_WORDS flag is set. The delta array has a sequence of deltas using the long type followed by a sequence of deltas using the short type. The count of deltas using the long type is derived using WORD_DELTA_COUNT_MASK. The remaining elements use the short type. The length of the data for each row, in bytes, is regionIndexCount + (wordDeltaCount && WORD_DELTA_COUNT_MASK) if the LONG_WORDS flag is not set, or 2 x that amount if the flag is set.
NOTE	Delta values are each represented directly. They are not packed as in the tuple variation store.
In general, variation deltas are (logically) signed 16-bit integers, and in most cases, they are applied to signed 16-bit values (FWORDs) or unsigned 16-bit values (UFWORDs). In the COLR table, however, scaled deltas can be applied to F2DOT14 or Fixed items, which are fixed-size floating types.

When applying scaled deltas to an F2DOT14 value, the F2DOT14 value is treated like a 16-bit integer. (In this sense, the delta and the F2DOT14 value can be viewed as integer values in units of 1/16384ths.) If the context in which the F2DOT14 is used constrains the valid range for the default value, then any variations by applying deltas are clipped to that range.
Fixed is a 32-bit (16.16) type and, in the general case, requires 32-bit deltas. The DeltaSet record used in the ItemVariationData subtable format can accommodate deltas that are, logically, either 16-bit or 32-bit. (See 7.2.3.4 for details.) When scaled deltas are applied to Fixed values, the Fixed value is treated like a 32-bit integer. (In this sense, the delta and the Fixed value can be viewed as integer values in units of 1/65536ths.)
7.2.4.2
Replace the “Optical size” tag description with the following:
Tag: 'opsz'
Name: Optical size
Description: Used to vary design to suit different text sizes.
Valid numeric range: Values must be strictly greater than zero.
Scale interpretation: Values can be interpreted as text size, in typographic points, as defined in the OpenType specification: a physical unit equal to 1/72 of a standard physical inch.
Recommended or required “Regular” value: A value in the range 10 to 16 is recommended for typical text settings.
Suggested programmatic interactions: Applications may choose to select an optical-size variant automatically based on the displayed text size.
Additional information:
The Optical size axis can be used as a variation axis within a variable font. It can also be used within a 'STAT' table in non-variable fonts within a family that has optical-size variants to provide a complete characterization of a font in relation to its family within the 'STAT' table. In the 'STAT' table of a non-variable font, a format 2 axis value table is recommended to characterize the range of text sizes for which the optical-size variant is intended.
Typical font implementation of optical size design variants involves adapting glyph proportions, stem weights, and details to be appropriate to specific sizes of displayed text. These adaptations may be both functional and aesthetic, ensuring legibility at smaller sizes and refinement of fine details and overall width at larger sizes. The nature of the adaptations may depend on aspects of the individual typeface design, the characters or scripts involved, targeted devices on which the font may be displayed, and known or intended distance from which text will be viewed.
Type designers may develop size-specific design variations based on print or screen rendering, typically evaluating the design of these variations at a reading distance of 14 to 16 inches. This can be used as a basis for determining appropriate optical size variants for different distances. For example, if the design of a given optical size variant is appropriate for 12-point text viewed from a reading distance of 15 inches, it should also be appropriate for 24-point text viewed from a reading distance of 30 inches.
The scale for the Optical size axis is text size in points. For these purposes, the text size is as determined by the document or application for its intended use; the actual physical size on a display may be different due to platform or application scaling methods or intended viewing distance.
The target of size-specific design is optical; i.e., tailored to what the reader is seeing. For this reason, Optical size axis variant selection should be determined, so far as possible, by as much information as available regarding displayed size of text as seen by the reader. Factors to be taken into account should include the scaling of type on specific platforms and the translation of document and platform units to 1/72 of a physical inch, as well as typical reading distances for applications and devices. This may mean that a nominally specified text size in a document could result in a different Optical size axis variant selection on different platforms and devices, determined by the actual size of text seen by the reader.
NOTE	User-perceived size is very dependent on viewing distance, not only physical size on the display. For example, when viewing text on a large-screen TV, the physical size on the display will be many times larger than the size perceived by the user. In this case, selecting an Optical size variant based only on the physical size on the display would likely result in reduced legibility for the user.
When translating between document units and the point (1/72 inch) scale for this axis, care should be taken not to assume equivalences between units that may apply on some platforms but not others.
In applications that automatically select an Optical size variant, this should normally be done based on the text size with a default or “100%” zoom level, not on a combination of text size and zoom level. Types of zoom that do not trigger re-layout of text should not change Optical size variant selection, while content enlarging or diminishing operations that change re-layout of text should make a new Optical size variant selection based on the new displayed sized.
If the size of displayed text is smaller or greater than the minimum and maximum extent of the axis range, Optical size axis variant selection should be clamped to the appropriate minimum or maximum axis value, not reset to the default instance.
It is recommended that software provide means to override automatic Optical size variant selection, as may be appropriate for particular platforms, intended use, known viewing distance, or accessibility.

7.3.5 “HVAR – Horizontal metrics variation table”
In 7.3.5, replace the last two paragraphs with the following:
An advance width mapping subtable adds additional data within the HVAR table, but it also makes it possible to use a more compact representation of the data in the item variation store. For example, if multiple glyphs have the same advance widths, the mapping subtable allows all of them to reference a single delta set within the store. Additional optimizations within the item variation store are possible. See the Common Table Formats chapter for more discussion about size optimization. In general, inclusion of an advance width mapping subtable is recommended.
Optional mapping subtables can also be used to provide delta-set indices for glyph side bearings. In variable fonts with TrueType outlines, variation data for side bearings is recommended. If variation data for side bearings is provided, it should include data for both left and right side bearings, and mapping subtables for left and right side bearings shall also be included.

In 7.3.5.2, replace the content of the entire subclause with the following:
7.3.5.2 	Table formats
The horizontal metrics variations table has the following format:
Horizontal metrics variations table
	Type
	Name
	Description

	uint16
	majorVersion
	Major version number of the metrics variations table – set to 1.

	uint16
	minorVersion
	Minor version number of the metrics variations table – set to 0.

	Offset32
	itemVariationStoreOffset
	Offset in bytes from the start of this table to the item variation store table.

	Offset32
	advanceWidthMappingOffset
	Offset in bytes from the start of this table to the delta-set index mapping for advance widths (may be NULL).

	Offset32
	lsbMappingOffset
	Offset in bytes from the start of this table to the delta-set index mapping for left side bearings (may be NULL).

	Offset32
	rsbMappingOffset
	Offset in bytes from the start of this table to the delta-set index mapping for right side bearings (may be NULL).

The item variation store table is documented in subclause 7.2.
Mapping subtables are represented using a DeltaSetIndexMap table; see 7.2.3.1 for the definition of this table. In the HVAR table, only format 0 of the DeltaSetIndexMap is used. Mapping subtables are optional. If a given mapping is not provided, the offset is set to NULL.
Variation data for advance widths is required. A delta-set index mapping subtable for advance widths can be provided, but is optional. If a mapping subtable is not provided, glyph indices are used as implicit delta-set indices. To access the delta set for the advance of given glyph, the delta-set outer-level index is zero, and the glyph ID is used as the inner-level index.
Variation data for side bearings are optional. If included, mapping tables are required to provide the delta-set index for each glyph.

In 7.3.5.3, replace the content of the entire subclause with the following:
7.3.5.3 	Processing
When performing text layout using a particular variation instance of a variable font, the application will need to obtain adjusted glyph metrics for that instance. The application obtains default values from the 'hmtx' and 'glyf' tables, and uses the 'HVAR' table to obtain interpolated adjustment values that are applied to the defaults.
Delta-set indices are obtained based on the glyph ID. If there is no delta-set index mapping table for advance widths, then glyph IDs implicitly provide the indices: for a given glyph ID, the delta-set outer-level index is zero, and the glyph ID is the delta-set inner-level index. If delta-set index mappings are provided, glyph IDs are used to lookup a mapping entry, which provides the outer- and inner-level delta-set indices in a packed format. See 7.2.3.1 for details.
The delta-set indices are used to reference a delta set for the target advance width or side bearing within the item variation store. The two-level organization of data within the item variation store is described in subclause 7.2. Each delta set includes different deltas that apply to variation instances falling within different regions of the variation space. The process by which the deltas are processed to derive an interpolated value for a given target item is described in subclause 7.1.

7.3.8 “VVAR – Vertical metrics variation table”
In 7.3.8.2, replace the last five paragraphs with the following:
Mapping subtables are represented using a DeltaSetIndexMap table; see 7.2.3.1 for the definition of this table. In the VVAR table, only format 0 of the DeltaSetIndexMap is used. Mapping subtables are optional. If a given mapping subtable is not provided, the offset is set to NULL.
Variation data for advance heights is required. A delta-set index mapping subtable for advance heights can be provided, but is optional. If a mapping table is not provided, glyph indices are used as implicit delta-set indices, as in the HVAR table.
Variation data for side bearings are optional. If included, mapping subtables are required to provide the delta-set index for each glyph.
Mappings and variation data for vertical origins are not used in fonts with TrueType outlines, but can be included in variable fonts with CFF 2 outlines if there is variability in the Y coordinates of glyph vertical origins, the default values of which are recorded in the VORG table. A mapping subtable is required for vertical-origin variation data.

Bibliography
Add a new entry 32 as follows:
[32]		HTML Living Standard, 4.12.5, The canvas element.
https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
Add a new entry 33 as follows:
[33]		Compositing and Blending Level 1. W3C Candidate Recommendation, 13 January 2015.
https://www.w3.org/TR/compositing-1/
Add a new entry 34 as follows:
[34]		CSS Color Module Level 4. W3C Working Draft Recommendation, 12 November 2020.
https://www.w3.org/TR/css-color-4/
38	© ISO 2021 – All rights reserved
© ISO 2021 – All rights reserved	39
image1.jpeg

image2.png

image3.png

image4.png
Layer 1
Layer O (bottom)

Layer 2 (top)

image5.png
—_—
Pad with Defined Pad with
starting color interval ending color

image6.png
T T T

Repeated Defined Repeated
intervals interval intervals

image7.png
T T T
Reflected Defined Reflected
intervals interval intervals

image8.png

image9.png
13NN

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png
PaintGlyph

PaintLinearGradient

glyphiD: 270

Color glyph data:

Color glyph presentation:

image30.png
PaintGlyph

PaintGlyph

PaintLinearGradient

glyphiD: 258

Color glyph data:

glyphiD: 270

Color glyph presentation:

image31.png
BaseGlyphRecords LayerRecords array Color glyphs

glyphiD:713 =< .

A\

4
glyphiD:527 < H B

glyphiD:486 < : ‘
2

glyphiD, palettelndex

1 | glyphlD, palettelndex

_ 0 | glyphID, palettelndex

image32.png
BaseGlyphPaintRecord

PaintGlyph

PaintLinearGradient

glyphlD: 1198
paintOffset

glyphID: 270

image33.png
BaseGlyphV1Record

PaintGlyph

PaintLinearGradient

glyphlD: 1198
paintOffset

glyphID: 270

image34.png
PaintColrLayers

numlayers,
firstLayerindex

PaintColrLayers

numlayers,
firstLayerindex

PaintColrLayers

numlayers,
firstLayerindex

\'s

LayerList table

paintOffsets array

Paint table

Offset: 0x16A0

Offset: 0x148E

Offset: OX13EA

Root of
paint
sub-graph

Paint table

Root of
paint
sub-graph

F-=-—>

Paint table

2 | Offset: 0x04B2

1 | Offset: 0x03D6

0 | Offset: 0x03A0

:

Root of
paint
sub-graph

F-=-—>

image35.png
PaintColrLayers

numlayers,
firstLayerindex

PaintColrLayers

numlayers,
firstLayerindex

PaintColrLayers

numlayers,
firstLayerindex

\'s

LayerV1List table

paintOffsets array

Paint table

Offset: 0x16A0

Offset: 0x148E

Offset: OX13EA

Root of
paint
sub-graph

Paint table

Root of
paint
sub-graph

F-=-—>

Paint table

2 | Offset: 0x04B2

1 | Offset: 0x03D6

0 | Offset: 0x03A0

:

Root of
paint
sub-graph

F-=-—>

image36.png
BaseGlyphPaintRecord PaintColrLayers

LayerList table

paintOffsets array

glyphID: 253
paintOffset

—

numlLayers,
firstLayerindex

4

Offset: 0x148E

Offset: OX13EA

PaintGlyph PaintSolid
glyphlD: 1653
——>
alpha: 0.2
PaintGlyph PaintRadialGradient
glyphID: 1654

image37.png
BaseGlyphV1Record

PaintColrLayers

LayerV1List table

paintOffsets array

glyphID: 253
paintOffset

—

numlLayers,
firstLayerindex

4

Offset: 0x148E

Offset: OX13EA

PaintGlyph PaintSolid
glyphlD: 1653
—>
alpha: 0.2
PaintGlyph PaintRadialGradient
glyphID: 1654

image38.png
PaintTransform

PaintGlyph

PaintLinearGradient

Transformation:

30°
Color glyph data: rotate

glyphID: 270

Color glyph presentation:

image39.png
PaintTransformed

PaintGlyph

PaintLinearGradient

Transformation:
rotate 30°

Color glyph data: —

glyphID: 270

Color glyph presentation:

image40.png
PaintTransform

PaintGlyph

PaintTransform

PaintLinearGradient

Transformation:

30°
Color glyph data: rotate

glyphID: 270

Transformation:
mirror in y-axis

Color glyph presentation:

image41.png
PaintTransformed

PaintGlyph

PaintTransform

PaintLinearGradient

Transformation:
rotate 30°

Color glyph data: —

glyphID: 270

Transformation:
mirror in y-axis

Color glyph presentation:

image42.png

image43.png

image44.png
LayerList table

paintOffsets array

PaintComposite

sourcePaintOffset
backdropPaintOffset

Mode: source out

Offset: 0x2116

Offset: 0x20CA

PaintGlyph

PaintGlyph PaintSolid
glyphID: 1182

A —
PaintGlyph PaintSolid
glyphID: 573

PaintSolid

glyphID: 573

image45.png
LayerV1List table

paintOffsets array

PaintComposite

sourcePaintOffset
backdropPaintOffset

Mode: source out

Offset: 0x2116

Offset: 0x20CA

PaintGlyph

PaintGlyph PaintSolid
glyphID: 1182

A —
PaintGlyph PaintSolid
glyphID: 573

PaintSolid

glyphID: 573

image46.png
LayerList table

PaintLinearGradient

paintOffsets array

Offset: 0x23AA

Offset: 0x20CA

PaintComposite alpha 1
sourcePaintOffset | —— to
alpha 0

backdropPaintOffset
Mode: source in

PaintGlyph PaintSolid

glyphiD: 573

—

PaintGlyph PaintSolid
glyphiD: 573

image47.png
LayerV1List table

paintOffsets array

PaintLinearGradient

Offset: 0x23AA

Offset: 0x20CA

~
PaintComposite alpha 1
sourcePaintOffset | —— to
alpha 0

backdropPaintOffset
Mode: source in

PaintGlyph PaintSolid

glyphiD: 573

—

PaintGlyph PaintSolid
glyphiD: 573

image48.png

image49.png
PaintGlyph @ 0x0f980a PaintSolid @ Ox0fal4

glyphiD: 308

Color glyph data: ' —

Component presentation: '

image50.png
b €

& (

Paint
@ 0x0f814

Root of color
glyph for
U+1F55B

Paint
@ 0x0f846

Root of color
glyph for
U+1F550

Paint
@ 0x0f872

Root of color
glyph for
U+1F551

PaintRotate
@ 0x0f950

Transformation:

rotate -30°

PaintRotate
@ 0x0f968

PaintGlyph PaintSolid
@ 0x0f980 @ 0xOfa14
glyphiD: 308

Transformation:

rotate -60°

image51.png
LayerList table

paintOffsets array

Offset: 0x18E0

Offset: 0x1926

Offset: 0x1954

Offset: 0x198A

image52.png
LayerV1List table

paintOffsets array

Offset: 0x18E0

Offset: 0x1926

Offset: 0x1954

Offset: 0x198A

image53.png
Root of graph:

o
N’

PaintColrLayers

LayerList table

paintOffsets array

numlayers: 3
firstLayerindex: 87

S

Offset: 0x18E0

Offset: 0x1926

Offset: 0x1954

Offset: 0x198A

-+ 0

Offset: 0x26CC

Offset: 0x26B8

_l——+I

PaintColrLayers

Offset: 0x26A2

S

numlLayers: 4
- >

firstLayerindex: 251

image54.png
Root of graph:

o
N’

PaintColrLayers

LayerV1List table

paintOffsets array

numlayers: 3
firstLayerindex: 87

S

Offset: 0x18E0

Offset: 0x1926

Offset: 0x1954

Offset: 0x198A

-+ 0

Offset: 0x26CC

Offset: 0x26B8

_l——+I

PaintColrLayers

Offset: 0x26A2

S

numlLayers: 4
- >

firstLayerindex: 251

image55.png
BaseGlyphPaintRecord

PaintColrLayers

LayerList table

paintOffsets array

glyphID: 63163
paintOffset

—>

numLayers: 4
firstLayerindex: 251

BaseGlyphPaintRecord PaintColrLayers

glyphID: 3542
paintOffset

—>

numlayers: 3
firstLayerindex: 87

s

Offset: 0x18E0

Offset: 0x1926

Offset: 0x1954

Offset: 0x198A

i

Offset: 0x26CC

Offset: 0x26B8

Offset: 0x26A2

s

PaintColrGlyph

glyphID: 63163

image56.png
BaseGlyphV1Record

PaintColrLayers

LayerV1List table

paintOffsets array

glyphID: 63163
paintOffset |l

numLayers: 4
firstLayerindex: 251

BaseGlyphV1Record

PaintColrLayers

glyphID: 3542
paintOffset |l

numlayers: 3
firstLayerindex: 87

s

Offset: 0x18E0

Offset: 0x1926

Offset: 0x1954

Offset: 0x198A

i

Offset: 0x26CC

Offset: 0x26B8

Offset: 0x26A2

s

PaintColrGlyph

glyphID: 63163

