

[bookmark: LIBEnFileName][bookmark: DDHeadingPage1][bookmark: DDOrganization][bookmark: LibEnteteISO][bookmark: LIBTypeTitreISO][bookmark: DDTITLE4][bookmark: DDTITLE3][bookmark: DDTITLE2][bookmark: DDTITLE1][bookmark: DDDocLanguage][bookmark: DDWorkDocDate][bookmark: DDDocStage][bookmark: DDOrganization3][bookmark: DDOrganization1][bookmark: DDBASEYEAR][bookmark: DDAmno][bookmark: DDDocSubType][bookmark: DDDocType][bookmark: DDWorkDocNo][bookmark: DDpubYear][bookmark: DDRefNoPart][bookmark: DDRefGen][bookmark: DDTCTitle][bookmark: DDWGNum][bookmark: DDSCNum][bookmark: DDTCNum][bookmark: LIBLANG][bookmark: libH2NAME][bookmark: libH1NAME][bookmark: LibDesc][bookmark: LibDescD][bookmark: LibDescE][bookmark: LibDescF][bookmark: NATSubVer][bookmark: CENSubVer][bookmark: ISOSubVer][bookmark: LIBVerMSDN][bookmark: LIBStageCode][bookmark: LibRpl][bookmark: LibICS][bookmark: LIBFIL][bookmark: LIBFrFileName][bookmark: LIBDeFileName][bookmark: LIBNatFileName][bookmark: LIBFileOld][bookmark: LIBTypeTitreCEN][bookmark: LIBTypeTitreNAT][bookmark: LibEnteteCEN][bookmark: LibEnteteNAT][bookmark: LIBASynchroVF][bookmark: LIBASynchroVE][bookmark: LIBASynchroVD][bookmark: DDEditionNo]C:\Users\shinji_w\Desktop\ISO-IEC_23008-1_(E).docFINAL DRAFT INTERNATIONAL STANDARD© ISO/IEC 2015 – All rights reservedISO/IEC 23001-11 63Part 11: Green MetadataInformation technology — Green ViÉlément introductif — Élément central — Partie 1: Titre de la partieInformation technology — MPEG Systems Technologies — Part 11: Energy-Efficient Media Consumption (Green Metadata)E2013-04-26(40) EnquiryISO/IECISO/IEC J International Standard 2013ISO/IEC 23008ISO/IEC 230081Information technology11291 2見出し 2見出し 1 02 STD Version 2.1c240 4 ISO/IEC JTC 1/SC 29
Date: 20XX18-XX-XX
ISO/IEC 23001-11
ISO/IEC JTC 1/SC 29/WG 11
Secretariat:
Information technology — MPEG Systems Technologies — Part 11: Energy-Efficient Media Consumption (Green Metadata)
Élément introductif — Élément central — Partie 1: Titre de la partie
Contents	Page
Foreword	54
Introduction	65
1	Scope	1
2	Normative references	1
3	Terms, definitions, symbols, abbreviated terms and conventions	2
3.1	Terms and definitions	2
3.2	Symbols and abbreviated terms	65
3.3	Conventions	76
4	Functional architecture (Informative)	87
4.1	Description of the functional architecture	87
4.2	Definition of components in the functional architecture	98
5	Decoder power reduction	98
5.1	General	98
5.2	Complexity metrics for decoder-power reduction	109
5.3	Interactive signalling for remote decoder-power reduction	4439
6	Display power reduction using display adaptation	4540
6.1	General	4540
6.2	Syntax	4540
6.3	Signalling	4641
6.4	Semantics	4641
7	Energy-efficient media selection	4943
7.1	General	4943
7.2	Syntax	4943
7.3	Signalling	4943
7.4	Semantics	5144
8	Metrics for quality recovery after low-power encoding	5245
8.1	General	5245
8.2	Syntax	5245
8.3	Signalling	5245
8.4	Semantics	5245
9	Conformance and reference software	5445
Annex A (normative) Supplemental Enhancement Information (SEI) syntax	5546
A.1	Syntax and semantics of Green Metadata SEI message carried in AVC NAL units	5546
A.1.1	Syntax	5546
A.1.2	Semantics	5647
A.2	Syntax and semantics of Green Metadata SEI message carried in HEVC NAL units	5747
A.2.1	Syntax	5747
A.2.2	Semantics	5949
A.3	Syntax and semantics of Green Metadata SEI message carried in VVC NAL units	5949
A.3.1	Syntax	5949
A.3.2	Semantics	6152
Annex B (normative) Implementation guidelines for the usage of Green Metadata	6253
B.1	Codec dynamic voltage frequency scaling for decoder-power reduction	6253
B.1.1	General	6253
B.1.2	Derivation of the complexity metrics	6253
B.1.2.1	Deriving the worst-case, largest value for MaxNumSixTapFilteringsPic(i)	6253
B.1.2.2	Deriving the worst-case, largest value for MaxNumAlphaPointDeblockingInstancesPic(i)	6556
B.1.3	Example usage of C-DVFS metadata	6757
B.2	Display adaptation	6960
B.2.1	General	6960
B.2.2	Example usage of display-adaptation metadata	6960
B.2.2.1	Example usage of display-adaptation metadata for contrast enhancement	6960
B.2.2.2	Preventing flicker arising from control latency	7162
B.2.2.3	Metadata for DA on displays with control-frequency limitations	7162
B.2.2.4	DA metadata to prevent flicker from large variations	7262
B.3	Energy-efficient media selection in adaptive streaming	7464
B.3.1	General	7464
B.3.2	Green Metadata production and transmission at the server side	7464
B.3.3	Use of Green Metadata at the client	7867
B.4	Interactive Signalling for Remote Decoder-Power Reduction	8271
B.4.1	General	8271
B.4.2	Decoding operations reduction request computation and transmission	8271
B.4.3	Use of decoding operations reduction request	8271
B.5	Cross-Segment decoding for quality recovery after low-power encoding	8573
B.5.1	General	8573
B.5.2	Green Metadata Usage	8573
C.1	Complexity metrics for decoder-power reduction	8775
C.1.1	Conformance test vectors	8775
C.1.2	Reference software	8775
C.2	Display-power reduction using display adaptation	8875
C.2.1	Conformance test vectors	8875
C.2.2	Reference software	8876
C.3	Energy-efficient media selection	8876
C.3.1	Conformance test vectors	8876
C.3.2	Reference software	8976
C.4	Metrics for quality recovery after low-power encoding	8977
C.4.1	Conformance test vectors	8977
C.4.2	Reference software	9077
[bookmark: _Toc63261093] Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC 23001-11 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
This second third edition cancels and replaces the first second edition (ISO/IEC 23001-11:20159). It incorporates the Amendments ISO/IEC 23001-11:2015/Amd 1:2016, ISO/IEC 23001-11:2015/Amd 2:2018 and ISO/IEC 23001-11:2015/Amd 3:2018.
[bookmark: _Toc63261094]Introduction
This document specifies the metadata (Green Metadata) that facilitates reduction of energy usage during media consumption as follows:
—	the format of the metadata that enables reduced decoder power consumption;
—	the format of the metadata that enables reduced display power consumption;
—	the format of the metadata that enables media selection for joint decoder and display power reduction;
—	the format of the metadata that enables quality recovery after low-power encoding.
This metadata facilitates reduced energy usage during media consumption without any degradation in the Quality of Experience (QoE). However, it is also possible to use this metadata to get larger energy savings, but at the expense of some QoE degradation.
	FINAL DRAFT INTERNATIONAL STANDARD
	ISO/IEC 23001-11

	© ISO/IEC 2015 – All rights reserved
	1

	2
	© ISO/IEC 2015 – All rights reserved

	© ISO/IEC 2015 – All rights reserved
	3

Information technology — MPEG Systems Technologies — Part 11: Energy-Efficient Media Consumption (Green Metadata)
[bookmark: _Toc63261095]Scope
This document specifies metadata for energy-efficient decoding, encoding, presentation, and selection of media.
The metadata for energy-efficient decoding specifies two sets of information: Complexity Metrics (CM) metadata and Decoding Operation Reduction Request (DOR-Req) metadata. A decoder uses CM metadata to vary operating frequency and thus reduce decoder power consumption. In a point-to-point video conferencing application, the remote encoder uses the DOR-Req metadata to modify the decoding complexity of the bitstream and thus reduce local decoder power consumption.
The metadata for energy-efficient encoding specifies a quality metric that is used by a decoder to reduce the quality loss from low-power encoding.
The metadata for energy-efficient presentation specifies RGB-component statistics and quality levels. A presentation subsystem uses this metadata to reduce power by adjusting display parameters, based on the statistics, to provide a desired quality level from those provided in the metadata.
The metadata for energy-efficient media selection specifies Decoder Operation Reduction Ratios (DOR-Ratios), RGB-component statistics and quality levels. The client in an adaptive streaming session uses this metadata to determine decoder and display power-saving characteristics of available video Representations and to select the Representation with the optimal quality for a given power-saving.
[bookmark: _Toc63261096]Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 138181, Information technology — Generic coding of moving pictures and associated audio information — Part 1: Systems
ISO/IEC 1449610, Information technology — Coding of audio-visual objects — Part 10: Advanced Video Coding
ISO/IEC 1449612, Information technology — Coding of audio-visual objects — Part 12: ISO base media file format
ISO/IEC 2300110, Information technology — MPEG systems technologies — Part 10: Carriage of Timed Metadata Metrics of Media in ISO Base Media File
ISO/IEC 230082, Information technology -- High efficiency coding and media delivery in heterogeneous environments -- Part 2: High efficiency video coding
ISO/IEC 230091, Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presentation description and segment formats
ISO/IEC/TR 23009-3, Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 3: Implementation guidelines
ISO/IEC 14496-5, Information technology -- Coding of audio-visual objects -- Part 5: Reference software | Rec. ITU-T H.264.2 : Reference software for ITU-T H.264 advanced video coding
ISO/IEC 23008-5, Information technology -- High efficiency coding and media delivery in heterogeneous environments -- Part 5: Reference software for high efficiency video coding
ISO/IEC 23090-3, Information technology — Coded representation of immersive media — Part 3: Versatile video coding
[bookmark: _Toc63261097]Terms, definitions, symbols, abbreviated terms and conventions
For the purposes of this document, the terms and definitions given in ISO/IEC 14496-10, ISO/IEC 23008-2, ISO/IEC 23009-1 and the following apply.

[bookmark: _Toc63261098]Terms and definitions
3.1.1
Adaptation Set
set of interchangeable encoded versions of one or several media content components
[SOURCE: ISO/IEC 230091, 3.1.3]
3.1.2
Alpha-Point Deblocking Instance
APDI
single filtering operation that produces either a single, filtered output p'0 or a single, filtered output q'0, where p'0 and q'0 are filtered samples across a 4x4 block edge
3.1.3
bitstream
sequence of bits that forms the representation of coded pictures and associated data forming one or more coded video sequences
[SOURCE: ISO/IEC 14496-10:2017, 3.14]
3.1.4
block
MxN (M-column by N-row) array of samples or an MxN array of transform coefficients
[SOURCE: ISO/IEC 14496-10:2017, 3.15]
3.1.5
byte
sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit on the right
[SOURCE: ISO/IEC 14496-10:2017, 3.19]
3.1.6
chroma
representing one of the two colour difference signals relating to the primary colours
[SOURCE: ISO/IEC 14496-10:2017, 3.24, modified – to be in line with ISO directives]
3.1.7
chroma_format_idc
chroma sampling relative to the luma sampling
3.1.8
deblocking filtering instance
single filtering operation that produces either a single, filtered output p' or a single, filtered output q', where p' and q' are filtered samples across a 8x8 and 4x4 block edge for HEVC and VVC, respectively

3.1.9
decoded picture
picture derived by decoding a coded picture
[SOURCE: ISO/IEC 14496-10:2017, 3.39, modified – to be in line with ISO directives]
3.1.10
decoder
embodiment of a decoding process
[SOURCE: ISO/IEC 14496-10:2017, 3.41]
3.1.11
decoding process
process specified in ISO/IEC 14496-10 or ISO/IEC 23008-2 that reads a bitstream and derives decoded pictures from it

3.1.12
display process
process that takes, as its input, the cropped decoded pictures that are the output of the decoding process
[SOURCE: ISO/IEC 14496-10:2017, 3.46]
3.1.13
encoder
embodiment of an encoding process
[SOURCE: ISO/IEC 14496-10:2017, 3.48]
3.1.14
encoding process
process that produces a bitstream conforming to ISO/IEC 14496-10 or ISO/IEC 23008-2.

3.1.15
frame
array of luma samples in monochrome format or an array of luma samples and two corresponding arrays of chroma samples in 4:2:0, 4:2:2 , and 4:4:4 colour format
[SOURCE: ISO/IEC 14496-10:2017, 3.55, modified – to be in line with ISO directives]
3.1.16
intra prediction
prediction derived from the decoded samples of the same decoded slice.
[SOURCE: ISO/IEC 14496-10:2017, 3.69]
3.1.17
luma
representing the monochrome signal relating to the primary colours
[SOURCE: ISO/IEC 14496-10:2017, 3.77, modified – to be in line with ISO directives]
3.1.18
macroblock
16x16 block of luma samples and two corresponding blocks of chroma samples of a picture that has three sample arrays, or a 16x16 block of samples of a monochrome picture or a picture that is coded using three separate colour planes
[SOURCE: ISO/IEC 14496-10:2017, 3.78]
3.1.19
Media Presentation Description
MPD
formalized description for a Media Presentation for the purpose of providing a streaming service
[SOURCE: ISO/IEC 230091, 3.1.26]
3.1.20
No-Quality-Loss Operating Point
NQLOP
metadata-enabled operating point associated with the largest display-power reduction that can be achieved without any quality loss (infinite PSNR)
3.1.21
non-zero block or macroblock
block or macroblock containing at least one non-zero transform coefficient
3.1.22
peak signal
maximum permissible RGB component (3.1.31) in a reconstructed frame
Note 1 to entry: For 8N-bit video, peak signal is 255(2N – 1).
3.1.23
period
interval over which complexity-metrics metadata are applicable
3.1.24
Period
interval of the Media Presentation, where a contiguous sequence of all Periods constitutes the Media Presentation
[SOURCE: ISO/IEC 230091, 3.1.34]
3.1.25
PicSizeInMbs
product of the picture width and the picture height in units of macroblocks
3.1.26
picture
collective term for a field or a frame
[SOURCE: ISO/IEC 14496-10:2017, 3.106]
3.1.27
pixel
smallest addressable element in an all-points addressable display device
3.1.28
prediction
embodiment of the prediction process
[SOURCE: ISO/IEC 14496-10:2017, 3.109]
3.1.29
prediction process
use of a predictor to provide an estimate of the sample value or data element currently being decoded
[SOURCE: ISO/IEC 14496-10:2017, 3.110]
3.1.30
predictor
combination of specified values or previously decoded sample values or data elements used in the decoding process of subsequent sample values or data elements
[SOURCE: ISO/IEC 14496-10:2017, 3.112]
3.1.31
reconstructed frames
frames obtained after applying RGB colour-space conversion and cropping to the specific decoded picture (3.1.8) or pictures (3.1.25) for which display power-reduction metadata are applicable
3.1.32
Representation
collection and encapsulation of one or more media streams in a delivery format and associated with descriptive metadata
[SOURCE: ISO/IEC 230091, 3.1.38]
3.1.33
RGB colour space
colour space based on the red, green, and blue primaries
3.1.34
RGB component
single sample representing one of the three primary colours of the RGB colour space (3.1.30)
3.1.35
Segment
unit of data associated with an HTTP-URL and optionally a byte range that are specified by an MPD
[SOURCE: ISO/IEC 230091, 3.1.39]
3.1.36
separate_colour_plane_flag
flag that, when set, specifies that the three colour components of the 4:4:4 chroma format are coded separately
3.1.37
Six-Tap Filtering
STF
single application of the 6-tap filter to generate a single filtered sample for fractional positions using the samples at integer-sample positions
3.1.38
source
video material or some of its attributes before encoding
[SOURCE: ISO/IEC 14496-10:2017, 3.146, modified – to be in line with ISO directives]
[bookmark: _Toc63261099]Symbols and abbreviated terms
For the purpose of this document, the symbols and abbreviated terms given in the following apply:
	APDI
	Alpha-Point Deblocking Instance

	ASIC
	Application Specific Integrated Circuit

	AVC
	Advanced Video Coding - ISO/IEC 14496-10

	BMFF
	Base Media File Format

	CM
	Complexity Metric

	CMOS
	Complementary Metal Oxide Semiconductor

	CPU
	Central processing Unit

	DASH
	Dynamic Adaptive Streaming over HTTP

	DOR-Ratio
	Decoding Operation Reduction Ratio

	DOR-Req
	Decoding Operation Reduction Request

	DVFS
	Dynamic Voltage Frequency Scaling

	Fps
	Frames Per Second

	FS
	Fresh Start

	GP
	Good Picture

	HEVC
	High Efficiency Video Coding - ISO/IEC 23008-2

	Mbps
	Mega Bits Per Second

	MPD
	Media Presentation Description

	MSD
	Mean Square Difference

	MV
	Motion Vector

	NQLOP
	No-Quality-Loss Operating Point

	PSNR
	Peak Signal to Noise Ratio

	SSIM
	Structural Similarity Index Measure

	wPSNR
	Weighted Peak Signal to Noise Ratio

	WS-PSNR
	Weighted to Spherically uniform Peak Signal to Noise Ratio

	QoE
	Quality of Experience

	RBLL
	Remaining Battery Life Level

	RGB
	Red, Green, Blue

	SEI
	Supplemental Enhancement Information

	SP
	Start Picture

	STF
	Six-Tap Filtering

	VVC
	Versatile Video Coding – ISO/IEC 23090-3

	XSD
	Cross-Segment Decoding

[bookmark: _Toc63261100]Conventions
Arithmetic operators
	+
	Addition

	-
	Subtraction (as a two-argument operator) or negation (as a unary prefix operator)

	*
	Multiplication

	xy
	Exponentiation

	x/y
	Division where no truncation or rounding is intended

	

	Division where no truncation or rounding is intended

	

	
Summation of with i taking all integer values from x up to and including y

Mathematical functions
Mathematical functions in this Technical Specification are defined as follows:

	(3-1)

	(3-2)
Floor(x) is the greatest integer less than or equal to x	(3-3)
Log10(x) returns the base-10 logarithm of x	(3-4)
Round(x) = Sign(x) * Floor(Abs(x) + 0.5)	(3-5)

	(3-6)
[bookmark: _Toc63261101]Functional architecture (Informative)
This clause is informative and placed here to provide context.
[bookmark: _Toc63261102]Description of the functional architecture
Figure 1 shows the functional architecture utilizing Green Metadata in this Technical Specification. The media pre-processor is applied to analyse and to filter the content source and a video encoder is used to encode the content to a bitstream for delivery. The bitstream is delivered to the receiver and decoded by a video decoder with the output rendered on a presentation subsystem that implements a display process.
[image:]
Figure 1 — Functional architecture
The Green Metadata is extracted from either the media encoder or the media pre-processor. In both cases, the Green Metadata is multiplexed or encapsulated in the conformant bitstream. Such Green Metadata is used at the receiver to reduce the power consumption for video decoding and presentation. The bitstream will be packetized and delivered to the receiver for decoding and presentation. At the receiver, the metadata extractor processes the packets and sends the Green Metadata to a power optimization module for efficient power control. For instance, the power optimization module interprets the Green Metadata and then applies appropriate operations to reduce the video decoder’s power consumption when decoding the video and also to reduce the presentation subsystem’s power consumption when rendering the video. In addition, the power-optimization module could collect receiver information, such as remaining battery capacity, and send it to the transmitter as green feedback to adapt the encoder operations for power-consumption reduction.
The normative aspect of this document is limited to the Green Metadata and Green Feedback in Figure 1.
[bookmark: _Toc63261103]Definition of components in the functional architecture
Green Metadata generator
—	Generates metadata from either the video encoder or the content pre-processor.
Green Metadata extractor
—	Interprets the bitstream syntax information and sends it to the power optimization module in the receiver.
Green feedback generator
—	Generates feedback information for the transmitter.
—	Communicates with the transmitter through a feedback channel, if available, for energy-efficient processing.
Green feedback extractor
—	Receives the feedback from the receiver and sends it to the power optimization module in the transmitter.
Power optimization module in the transmitter
—	Collects platform statistics such as the remaining battery capacity of the device in which the transmitter resides.
—	Controls the operation of the Green Metadata generator, video encoder and content pre-processor.
—	Processes green feedback.
Power optimization module in the receiver
—	Processes the green-metadata information and applies appropriate operations for power-consumption control.
—	Collects platform statistics such as remaining battery capacity of the device in which the receiver resides.
—	Sends requests to Green feedback generator.
[bookmark: _Toc63261104]Decoder power reduction
[bookmark: _Toc63261105]General
Energy-efficient decoding is achieved with two types of metadata: Complexity Metrics (CMs) metadata and Decoding Operation Reduction Request (DOR-Req) metadata. A decoder may use CMs metadata to vary operating frequency and thus reduce decoder power consumption. In a point-to-point video conferencing application, the remote encoder may use the DOR-Req metadata to modify the decoding complexity of the bitstream and thus reduce local decoder power consumption.
[bookmark: _Toc63261106]Complexity metrics for decoder-power reduction
General
With respect to the functional architecture in Figure 1, the green-metadata generator provides CMs that indicate the picture-decoding complexity of an AVC, or HEVC or VVC bitstream to the decoder.
Syntax
The syntax for the AVC CMs is as follows:
	
	Size (bits)
	Descriptor

	period_type
	8
	unsigned integer

	if (period_type = = 2) || (period_type = = 7) {
	
	

		num_seconds
	16
	unsigned integer

	}
	
	

	else if (period_type = = 3) || (period_type = = 8) {
	
	

		num_pictures
	16
	unsigned integer

	}

	
	

	if (period_type = = 8) {
	
	

		temporal_map
	tbd
	unsigned integer

		for (t=0; t<8; t++) {
	
	

			if ((temporal_map>>t)%2 = = 1)
	
	

				num_pictures_in_temporal_layers[t]
	16
	unsigned integer

		}
	
	

	}

	
	

	if (period_type <= 3) {
	
	

		portion_non_zero_8x8_blocks
	8
	unsigned integer

		portion_intra_predicted_macroblocks
	8
	unsigned integer

		portion_six_tap_filterings
	8
	unsigned integer

		portion_alpha_point_deblocking_instances
	8
	unsigned integer

	}
	
	

	else if (period_type = = 4) {

	
	

		for (i=0; i<= num_slice_groups_minus1; i++) {
	
	

			num_slices_minus1[i]
	16
	unsigned integer

		}
	
	

		for (i=0; i<= num_slice_groups_minus1; i++) {
	
	

			for (j=0; j<=num_slices_minus1[i]; j++) {
	
	

				first_mb_in_slice[i][j]
	16
	unsigned integer

				portion_non_zero_8x8_blocks[i][j]
	8
	unsigned integer

				portion_intra_predicted_macroblocks[i][j]
	8
	unsigned integer

				portion_six_tap_filterings[i][j]
	8
	unsigned integer

				portion_alpha_point_deblocking_instances[i][j]
	8
	unsigned integer

			}
	
	

		}
	
	

	}

	
	

	else if (period_type >= 5) && (period_type <= 8) {
{

	
	

		num_layers_minus1
	16
	unsigned integer

		for (l=0; l<= num_layers_minus1; l++) {
	
	

			picture_parameter_set_id[l]
	8
	unsigned integer

			priority_id[l]
	6
	unsigned integer

			dependency_id[l]
	3
	unsigned integer

			quality_id[l]

	4
	unsigned integer

			temporal_id[l]
	3
	unsigned integer

			portion_non_zero_8x8_blocks[l]
	8
	unsigned integer

			portion_intra_predicted_macroblocks[l]
	8
	unsigned integer

			portion_six_tap_filterings[l]
	8
	unsigned integer

			portion_alpha_point_deblocking_instances[l]
	8
	unsigned integer

		}
	
	

	}
	
	

Editorial Notes (to be done)
· need to define coding length of temporal_map

The syntax for the HEVC CMs is as follows:
	
	Size (bits)
	Descriptor

	period_type
	8
	unsigned integer

	if (period_type = = 2) {
	
	

		num_seconds
	16
	unsigned integer

	}
	
	

	else if (period_type = = 3) {
	
	

		num_pictures
	16
	unsigned integer

	}
	
	

	if (period_type <= 3) {
	
	

		portion_non_zero_blocks_area
	8
	unsigned integer

		if (portion_non_zero_blocks_area != 0) {
	
	

			portion_8x8_blocks_in_non_zero_area
	8
	unsigned integer

			portion_16x16_blocks_in_non_zero_area
	8
	unsigned integer

		portion_32x32_blocks_in_non_zero_area
	8
	unsigned integer

		}
	
	

		portion_intra_predicted_blocks_area

	8
	unsigned integer

		if (portion_intra_predicted_blocks_area = = 255) {

	
	

			portion_planar_blocks_in_intra_area
	8
	unsigned integer

			portion_dc_blocks_in_intra_area
	8
	unsigned integer

			portion_angular_hv_blocks_in_intra_area
	8
	unsigned integer

		}
	
	

		else {
	
	

			portion_blocks_a_c_d_n_filterings
	8
	unsigned integer

			portion_blocks_h_b_filterings
	8
	unsigned integer

			portion_blocks_f_i_k_q_filterings
	8
	unsigned integer

			portion_blocks_j_filterings
	8
	unsigned integer

			portion_blocks_e_g_p_r_filterings
	8
	unsigned integer

		}
	
	

		portion_deblocking_instances
	8
	unsigned integer

	}

	
	

	else if (period_type == 4) {
	
	

		max_num_slices_tiles_minus1
	16
	unsigned integer

		for (t=0; t<=max_num_slices_tiles_minus1; t++) {
	
	

			first_ctb_in_slice_or_tile[t]
	16
	unsigned integer

			portion_non_zero_blocks_area[t]
	8
	unsigned integer

			if (portion_non_zero_blocks_area[t] != 0) {
	
	

				portion_8x8_blocks_in_non_zero_area[t]
	8
	unsigned integer

				portion_16x16_blocks_in_non_zero_area[t]
	8
	unsigned integer

				portion_32x32_blocks_in_non_zero_area[t]
	8
	unsigned integer

			}
	
	

			portion_intra_predicted_blocks_area[t]
	8
	unsigned integer

			if (portion_intra_predicted_blocks_area[t] = = 255) {

	
	

				portion_planar_blocks_in_intra_area[t]
	8
	unsigned integer

				portion_dc_blocks_in_intra_area[t]
	8
	unsigned integer

				portion_angular_hv_blocks_in_intra_area[t]
	8
	unsigned integer

			}
	
	

			else {
	
	

				portion_blocks_a_c_d_n_filterings[t]
	8
	unsigned integer

				portion_blocks_h_b_filterings[t]
	8
	unsigned integer

				portion_blocks_f_i_k_q_filterings[t]
	8
	unsigned integer

				portion_blocks_j_filterings[t]
	8
	unsigned integer

				portion_blocks_e_g_p_r_filterings[t]
	8
	unsigned integer

			}
	
	

			portion_deblocking_instances[t]
	8
	unsigned integer

		}
	
	

	}
	
	

The syntax for the VVC CMs is as follows:
	
	Size (bits)
	Descriptor

	period_type
	8
	unsigned integer

	if (period_type == 2) {
	
	

		num_seconds
	16
	unsigned integer

	}
	
	

	else if (period_type == 3) {
	
	

		num_pictures
	16
	unsigned integer

	}
	
	

	if (period_type <= 3) {
	
	

		portion_non_zero_blocks_area
	8
	unsigned integer

		if (portion_non_zero_blocks_area != 0) {
	
	

			portion_non_zero_4_8_16_blocks_area
	8
	unsigned integer

			portion_ non_zero_32_64_128_blocks_area
	8
	unsigned integer

			portion_ non_zero_256_512_1024_blocks_area
	8
	unsigned integer

			portion_ non_zero_2048_4096_blocks_area
	8
	unsigned integer

		}
	
	

		portion_non_zero_transform_coefficients_area
	8
	unsigned integer

		portion_intra_predicted_blocks_area

	8
	unsigned integer

		if (portion_intra_predicted_blocks_area = = 255) {

	
	

			portion_planar_blocks_in_intra_area
	8
	unsigned integer

			portion_dc_blocks_in_intra_area
	8
	unsigned integer

			portion_angular_hv_blocks_in_intra_area
	8
	unsigned integer

			portion_mip_blocks_in_intra_area
	8
	unsigned integer

		}
	
	

		else {
	
	

			portion_bi_and_gpm_predicted_blocks_area

	8
	unsigned integer

		}
	
	

		portion_deblocking_instances
	8
	unsigned integer

		portion_sao_filtered_blocks
	8
	unsigned integer

		portion_alf_filtered_blocks
	8
	unsigned integer

	}

	
	

	else if (period_type >= 4 || period_type <= 8) {
	
	

		max_num_segments_minus1
	16
	unsigned integer

		for (t=0; t<=max_num_segments_minus1; t++) {
	
	

			first_ctb_in_segment[t]
	16
	unsigned integer

			portion_non_zero_blocks_area[t]
	8
	unsigned integer

			if (portion_non_zero_blocks_area[t] != 0) {
	
	

				portion_non_zero_4_8_16_blocks_area[t]
	8
	unsigned integer

				portion_non_zero_32_64_128_block_area[t]
	8
	unsigned integer

				portion_non_zero_256_512_1024_blocks_area[t]
	8
	unsigned integer

				portion_non_zero_2048_4096_blocks_area[t]
	8
	unsigned integer

			}
	
	

			portion_non_zero_transform_coefficients_area[t]
	8
	unsigned integer

			portion_intra_predicted_blocks_area[t]
	8
	unsigned integer

			if (portion_intra_predicted_blocks_area[t] = = 255) {

	
	

				portion_planar_blocks_in_intra_area[t]
	8
	unsigned integer

				portion_dc_blocks_in_intra_area[t]
	8
	unsigned integer

				portion_angular_hv_blocks_in_intra_area[t]
	8
	unsigned integer

				portion_mip_blocks_in_intra_area[t]
	8
	unsigned integer

			}
	
	

			else {
	
	

			portion_bi_and_gpm_predicted_blocks_area[t]
	8
	unsigned integer

			}
	
	

			portion_deblocking_instances[t]
	8
	unsigned integer

			portion_sao_filtered_blocks[t]
	8
	unsigned integer

			portion_alf_filtered_blocks[t]
	8
	unsigned integer

		}
	
	

	}
	
	

Editorial Notes (to be done)
· Investigate whether the number of intra-coding related syntax elements can be reduced, by grouping or merging the currently considered ones (related to planar, dc, angular, mip modes)
· Investigate possible merging of loop-filter related syntax elements (related to deblocking, sao, alf)
· Further check that the currently defined syntax elements related are well representative of decoding complexity of bitstreams corresponding to various use cases (beyond random-access use cases, investigation of low-delay use case is planed)
· Consider using 10 bits instead of 8 bits for coding the complexity metrics syntax elements for a more precise description and decoding complexity control

Signalling
SEI messages can be used to signal Green Metadata in an AVC, or HEVC or VVC stream. The Green Metadata SEI message payload type is specified in ISO/IEC 14496-10, and ISO/IEC 23008-2 and ISO/IEC 23090-3. The complete syntax of the Green Metadata SEI message payload is specified in Annex A of this document.
The message containing the CMs is transmitted at the start of an upcoming period. The next message containing CMs will be transmitted at the start of the next upcoming period. Therefore, when the upcoming period is a picture or the interval up to the next I-slice, a message will be transmitted for each picture or interval, respectively. However, when the upcoming period is a specified time interval or a specified number of pictures, the associated message will be transmitted with the first picture in the time interval or with the first picture in the specified number of pictures.
Semantics
AVC semantics
The semantics of various terms are defined below.
period_type specifies the type of upcoming period over which the four complexity metrics are applicable and is defined in the Table 1following table.
[bookmark: _Ref215994896][bookmark: _Toc246350677][bookmark: _Toc287363916][bookmark: _Toc415476431][bookmark: _Toc423602466][bookmark: _Toc423602640][bookmark: _Toc501130551][bookmark: _Toc510795476][bookmark: _Toc50057346]Table 1 – specification of period_type for AVC
	Value
	Description

	0x00
	complexity metrics are applicable to a single picture

	0x01
	complexity metrics are applicable to all pictures in decoding order, up to (but not including) the picture containing the next I slice

	0x02
	complexity metrics are applicable over a specified time interval in seconds

	0x03
	complexity metrics are applicable over a specified number of pictures counted in decoding order

	0x04
	complexity metrics are applicable to a single picture with slice granularity

	0x05
	complexity metrics are applicable to a single picture with scalable layer granularity

	0x06
	complexity metrics are applicable to all pictures in decoding order, up to (but not including) the picture containing the next I slice in the base layer with scalable layer granularity

	0x07
	complexity metrics are applicable over a specified time interval in seconds with scalable layer granularity

	0x08
	complexity metrics are applicable over a specified number of pictures counted in decoding order with scalable layer granularity

	0x09–0xFF
	user-defined

num_seconds indicates the number of seconds over which the complexity metrics are applicable when period_type is 2 or 7.
num_pictures indicates the number of pictures, counted in decoding order, over which the complexity metrics are applicable when period_type is 3 or 8. When period_type is 8, this is a default number of pictures for each temporal layer, which can be overidden using temporal_map flags.
NumPicsInPeriod specifies the number of pictures in the specified period. When period_type is 0 or 4, then NumPicsInPeriod is 1. When period_type is 1, then NumPicsInPeriod is determined by counting the pictures in decoding order up to (but not including) the one containing the next I slice. When period_type is 2, then NumPicsInPeriod is determined from the frame rate. When period_type is 3, then NumPicsInPeriod is equal to num_pictures.
TotalNumMacroblocksInPeriod specifies the total number of macroblocks that are coded in the specified period. It is determined by the following computation:

							(51)
where TotalNumMacroblocksPic(n) is set to the value of the AVC variable PicSizeInMbs for the nth picture within the specified period, where 1 <= n <= NumPicsInPeriod.
temporal_map indicates which temporal layer has a different number of pictures from num_pictures in the specified period, when period_type is 8.
num_pictures_in_temporal_layer[t] indicates the number of pictures in the specified period for the tth temporal layer when period_type is 8. When not present, it is equal to num_pictures.
NumPicsInPeriodForTemporalLayer[t] specifies the number of pictures in the specified period for the tth temporal layer. When period_type is 5 then NumPicsInPeriodForTemporalLayer[t] is 1. When period_type is 6, then NumPicsInPeriodForTemporalLayer[t] is determined by counting the pictures associated to the tth temporal layer in decoding order up to (but not including) the one containing the next I slice. When period_type is 7, then NumPicsInPeriodForTemporalLayer[t] is determined from the frame rate associated to the tth temporal layer. When period_type is 8, then NumPicsInPeriodForTemporalLayer[t] is equal to num_pictures_in_temporal_layer[t].
portion_non_zero_8x8_blocks indicates the portion of 8x8 blocks with non-zero transform coefficients values in the specified period and is defined as follows:
	(52)
where NumNonZero8x8Blocks is the number of 8x8 blocks with non-zero transform coefficients values in the specified period. NumNonZero8x8Blocks is derived from portion_non_zero_8x8_blocks and TotalNumMacroblocksInPeriod in the decoder.
portion_intra_predicted_macroblocks indicates the portion of intra-predicted macroblocks in the specified period and is defined as follows:
	 (53)
where NumIntraPredictedMacroblocks is the number of intra-predicted macroblocks in the specified period. NumIntraPredictedMacroblocks is derived from portion_intra_predicted_macroblocks and TotalNumMacroblocksInPeriod in the decoder.
portion_six_tap_filterings indicates the portion of 6-tap filterings (STFs), as defined in Terms and definitions of this document, in the specified period and is defined as follows:
	(54)
where MaxNumSixTapFilteringsInPeriod is the maximum number of STFs that could occur within the specified period and is derived from TotalNumMacroblocksInPeriod variable as
MaxNumSixTapFilteringsInPeriod = (1664 * TotalNumMacroblocksInPeriod)	(55)
and NumSixTapFilterings is the number of 6-tap filterings (STFs) within the specified period. Guidance for the counting of NumSixTapFilterings can be found in Annex B of this document. NumSixTapFilterings is derived from portion_six_tap_filterings and MaxNumSixTapFilteringsInPeriod in the decoder.
portion_alpha_point_deblocking_instances indicates the portion of Alpha-Point Deblocking Instances (APDIs) in the specified period and is defined as follows:

(56)
MaxNumAlphaPointDeblockingInstancesInPeriod is the maximum number of APDIs that could occur within the specified period and is derived from TotalNumMacroblocksInPeriod and ChromaFormatMultiplier variables as
	(57)
ChromaFormatMultiplier depends on the AVC variables separate_colour_plane_flag and chroma_format_idc as shown in the Table 2 following table.

[bookmark: _Ref78452957]Table 2 – specification of ChromaFormatMultiplier for AVC
	ChromaFormatMultiplier
	separate_colour_plane_flag
	chroma_format_idc
	Comment

	1
	0
	0
	monochrome

	1.5
	0
	1
	4:2:0 sampling

	2
	0
	2
	4:2:2 sampling

	3
	0
	3
	4:4:4 sampling

	3
	1
	any value
	separate colour
plane

NumAlphaPointDeblockingInstances is the number of APDIs in the specified period. Using the notation in ISO/IEC 1449610, this is equivalent to the total number of filtering operations applied to produce filtered samples of the type p'0 or q'0, in the specified period. NumAlphaPointDeblockingInstances is derived from portion_alpha_point_deblocking_instances and MaxNumAlphaPointDeblockingInstancesInPeriod in the decoder.
num_slices_minus1 plus 1 indicates the number of slices per slice_group in the picture.
first_mb_in_slice[i][j] indicates the first macroblock number in the slice[i][j].
TotalNumMacroblocksInSlice[i][j] is the total number of macroblocks that are coded in the slice[i][j] and is determined by the following computation:
If num_slice_groups_minus1 is equal to 0:
 if (j<num_slices_minus1[0])
 TotalNumMacroblocksInSlice[0][j] = first_mb_in_slice[0][j+1] – first_mb_in_slice[0][j]
 else
 TotalNumMacroblocksInSlice[0][j] = PicSizeInMbs – first_mb_in_slice[0][j]				 (58)
Otherwise (num_slice_groups_minus1 is not equal to 0), and after derivation of the macroblock to slice group map (MbToSliceGroupMap) as specified in subclause “Specification for conversion of map unit to slice group map to macroblock to slice group map” in ISO/IEC 1449610,
 if (j<num_slices_minus1[i])
 k=0;
	 for (n=first_mb_in_slice[i][j]; n< first_mb_in_slice[i][j+1]; n++)
 	if (MbToSliceGroupMap[first_mb_in_slice[i][j]] == MbToSliceGroupMap[n])
 		k++;
 TotalNumMacroblocksInSlice[i][j] = k;
 else
	 k=0;
	 for (n=first_mb_in_slice[i][j]; n< PicSizeInMbs; n++)
 	if (MbToSliceGroupMap[first_mb_in_slice[i][j]] == MbToSliceGroupMap[n])
 		k++;
 TotalNumMacroblocksInSlice[i][j] = k; 													 (59)
portion_non_zero_8x8_blocks[i][j] indicates the portion of 8x8 blocks with non-zero transform coefficients values in the slice[i][j] and is defined as follows:.
	(510)
where NumNonZero8x8Blocks[i][j] is the number of 8x8 blocks with non-zero transform coefficients values in the slice[i][j]. NumNonZero8x8Blocks[i][j] is derived from portion_non_zero_8x8_blocks[i][j] and TotalNumMacroblocksInSlice[i][j] in the decoder.
portion_intra_predicted_macroblocks[i][j] indicates the portion of macroblocks using Intra prediction modes in the slice[i][j] and is defined as follows:
	(511)
where NumIntraPredictedMacroblocks[i][j] is the number of macroblocks using Intra prediction modes in the slice[i][j]. NumIntraPredictedMacroblocks[i][j] is derived from portion_intra_predicted_macroblocks[i][j] and TotalNumMacroblocksInSlice[i][j] in the decoder.
portion_six_tap_filterings[i][j] indicates the portion of 6-tap filterings (STFs), as defined in Terms and definitions of this document, in the specified slice[i][j] and is defined as follows:
	(512)
where MaxNumSixTapFilteringsInSlice[i][j] is the maximum number of STFs that could occur in the slice[i][j] and is derived from TotalNumMacroblocksInSlice[i][j] variable as
MaxNumSixTapFilteringsInSlice[i][j] = 1664 * TotalNumMacroblocksInSlice[i][j]	(513)
and NumSixTapFilterings[i][j] is the number of 6-tap filterings (STFs) within the slice[i][j]. Guidance for the counting of NumSixTapFilterings[i][j] can be found in Annex B of this document. NumSixTapFilterings[i][j] is derived from portion_six_tap_filterings[i][j] and MaxNumSixTapFilteringsInSlice[i][j] in the decoder.
portion_alpha_point_deblocking_instances[i][j] indicates the portion of Alpha-Point Deblocking Instances (APDIs) in the specified slice[i][j] and is defined as follows:

(514)
where MaxNumAlphaPointDeblockingInstancesInSlice[i][j] is the maximum number of APDIs that could occur in the slice[i][j] and is derived from TotalNumMacroblocksInSlice[i][j] and ChromaFormatMultiplier variables as
 MaxNumAlphaPointDeblockingInstancesInSlice[i][j] =
 128 * ChromaFormatMultiplier * TotalNumMacroblocksInSlice[i][j]	 (515)
and NumAlphaPointDeblockingInstances[i][j] is the number of Alpha-Point Deblocking Instances (APDIs) in slice[i][j]. NumAlphaPointDeblockingInstances[i][j] is derived from portion_alpha_point_deblocking_instances[i][j] and MaxNumAlphaPointDeblockingInstancesInSlice[i][j] in the decoder.
num_layers_minus1 plus 1 indicates the number of scalable layers in the associated picture or in the specified period.
pic_parameter_set_id[l] indicates the picture parameter set in use for the lth scalable layer. The value of pic_parameter_set_id[l] shall be in the range of 0 to 255, inclusive (as specified in subclause “Slice header semantics” in ISO/IEC 1449610).
priority_id[l] indicates a priority identifier for the NAL unit in the lth scalable layer. The value of priority_id[l] shall be in the range of 0 to 63, inclusive (as specified in subclause “Slice data in scalable extension semantics” in ISO/IEC 1449610).
dependency_id[l] indicates a dependency identifier for the NAL unit in the lth scalable layer. The value of dependency_id[l] shall be in the range of 0 to 7, inclusive (as specified in subclause “Slice data in scalable extension semantics” in ISO/IEC 1449610).
quality_id[l] indicates a quality identifier for the NAL unit in the lth scalable layer. The value of quality_id[l] shall be in the range of 0 to 15, inclusive (as specified in subclause “Slice data in scalable extension semantics” in ISO/IEC 1449610).
temporal_id[l] indicates a temporal identifier for the NAL unit in the lth scalable layer. The value of temporal_id[l] shall be in the range of 0 to 7, inclusive (as specified in subclause “Slice data in scalable extension semantics” in ISO/IEC 1449610).
portion_non_zero_8x8_blocks[l] indicates the portion of 8x8 blocks with non-zero transform coefficients values in the lth scalable layer and is defined as follows:.
	(516)
TotalNumMacroblocksInLayerInPeriod[l] is the total number of macroblocks in the lth scalable layer in the specified period and is derived from TotalNumMacroblocksInLayer[l] and NumPicsInPeriodForTemporalLayer[temporal[l]]as
	(517)
where TotalNumMacroblocksInLayer[l] is the total number of macroblocks in the lth scalable layer and determined after derivation of the number of macroblock associated with the pic_parameter_set_id[l], as specified in subclause “Slice header semantics” in ISO/IEC 1449610.
NumNonZero8x8Blocks[l] is the number of 8x8 blocks with non-zero transform coefficients values in the lth scalable layer in the specified period. It is derived from portion_non_zero_8x8_blocks[l] and TotalNumMacroblocksInLayerInPeriod[l] in the decoder.
portion_intra_predicted_macroblocks[l] indicates the portion of macroblocks using Intra prediction modes in the lth scalable layer and is defined as follows:
	(518)
NumIntraPredictedMacroblocks[l] is the number of macroblocks using Intra prediction modes in the lth scalable layer in the specified period. It is derived from portion_intra_predicted_macroblocks[l] and TotalNumMacroblocksInLayerInPeriod[l] in the decoder.
portion_six_tap_filterings[l] indicates the portion of 6-tap filterings (STFs), as defined in Terms and definitions of this document, in the specified lth scalable layer in the specified period and is defined as follows:
	(519)
MaxNumSixTapFilteringsInLayerInPeriod[l] is the maximum number of STFs that could occur in the lth scalable layer in the specified period and is derived from TotalNumMacroblocksInLayerInPeriod[l] variable as
MaxNumSixTapFilteringsInLayerInPeriod[l] = 1664 * TotalNumMacroblocksInLayerInPeriod[l]	(520)
NumSixTapFilterings[l] is the number of 6-tap filterings (STFs) within the lth scalable layer in the specified period. Guidance for the counting of NumSixTapFilterings[l] can be found in Annex B of this document. It is derived from portion_six_tap_filterings[l] and MaxNumSixTapFilteringsInLayerInPeriod[l] in the decoder.
portion_alpha_point_deblocking_instances[l] indicates the portion of Alpha-Point Deblocking Instances (APDIs) in the specified lth scalable layer in the specified period and is defined as follows:
	(521)
MaxNumAlphaPointDeblockingInstancesInLayerInPeriod[l] is the maximum number of APDIs that could occur in the lth scalable layer in the specified period and is derived from TotalNumMacroblocksInLayerInPeriod[l] and ChromaFormatMultiplier variables as
MaxNumAlphaPointDeblockingInstancesInLayer[l] =
 128 * ChromaFormatMultiplier * TotalNumMacroblocksInLayerInPeriod [l]	(522)
NumAlphaPointDeblockingInstances[l] is the number of Alpha-Point Deblocking Instances (APDIs) in the lth scalable layer in the specified period. It is derived from portion_alpha_point_deblocking_instances[l] and MaxNumAlphaPointDeblockingInstancesInLayerInPeriod[l] in the decoder.

HEVC semantics
The semantics of various terms are defined below.
period_type specifies the type of upcoming period over which the complexity metrics are applicable and is defined in the Table 3following table.

[bookmark: _Ref78453028]Table 3 – specification of period_type for HEVC
	Value
	Description

	0x00
	complexity metrics are applicable to a single picture

	0x01
	complexity metrics are applicable to all pictures in decoding order, up to (but not including) the picture containing the next I slice

	0x02
	complexity metrics are applicable over a specified time interval in seconds

	0x03
	complexity metrics are applicable over a specified number of pictures counted in decoding order

	0x04
	complexity metrics are applicable to a single picture with slice or tile granularity

	0x05-0xFF
	reserved

num_seconds indicates the number of seconds over which the complexity metrics are applicable when period_type is 2.
num_pictures specifies the number of pictures, counted in decoding order, over which the complexity metrics are applicable when period_type is 3.
NumPicsInPeriod is the number of pictures in the specified period. When period_type is 0, then NumPicsInPeriod is 1. When period_type is 1, then NumPicsInPeriod is determined by counting the pictures in decoding order up to (but not including) the one containing the next I slice. When period_type is 2, then NumPicsInPeriod is determined from the frame rate. When period_type is 3, then NumPicsInPeriod is equal to num_pictures.
TotalNum4x4BlocksInPeriod is the total number of 4x4 blocks that are coded in the specified period.
It is determined by the following computation:
	(523)
where TotalNum4x4BlocksPic(n) is derived from HEVC variables as follows
PicSizeInCtbsY * (1 << (CtbLog2SizeY-2))2	(524)
for the nth picture within the specified period, where 1 <= n <= NumPicsInPeriod.
portion_non_zero_blocks_area indicates the portion of area covered by blocks with non-zero transform coefficients values, in the pictures of the specified period, using a 4using 4x4 blocks granularity and is defined as follows:
 	(525)
where NumNonZeroBlocks is the number of blocks with non-zero transform coefficients values in the specified period using 4x4 granularity. At the encoder side, NumNonZeroBlocks is computed as follows:

 (526)
where NumNonZero4x4Blocks, NumNonZero8x8Blocks, NumNonZero16x16Blocks, NumNonZero32x32Blocks are the number of 4x4, 8x8, 16x16 and 32x32 blocks with non-zero transform coefficients values, respectively, in the specified period.
NumNonZeroBlocks is derived from portion_non_zero_blocks_area and TotalNum4x4BlocksInPeriod in the decoder.
portion_8x8_blocks_in_non_zero_area indicates the portion of 8x8 blocks area in the non-zero area in the specified period and is defined as follows:
	(527)
When not present, is equal to 0.
NumNonZero8x8Blocks is the number of 8x8 blocks with non-zero transform coefficients values in the specified period. It is derived from portion_8x8_blocks_in_non_zero_area and NumNonZeroBlocks in the decoder.
portion_16x16_blocks_in_non_zero_area indicates the portion of 16x16 blocks area in the non-zero area in the specified period and is defined as follows:
	(528)
When not present, is equal to 0.
NumNonZero16x16Blocks is the number of 16x16 blocks with non-zero transform coefficients values in the specified period. It is derived from portion_16x16_blocks_in_non_zero_area and NumNonZeroBlocks in the decoder.
portion_32x32_blocks_in_non_zero_area indicates the portion of 32x32 blocks area in the non- zero area in the specified period and is defined as follows:
 	(529)
When not present, is equal to 0.
NumNonZero32x32Blocks is the number of 32x32 blocks with non-zero transform coefficients values in the specified period. It is derived from portion_32x32_blocks_in_non_zero_area and NumNonZeroBlocks in the decoder.
NumNonZero4x4Blocks is the number of 4x4 blocks with non-zero transform coefficients values in the specified period. NumNonZero4x4Blocks is derived from NumNonZeroBlocks, NumNonZero8x8Blocks, NumNonZero16x16Blocks and NumNonZero32x32Blocks as follows in the decoder:

 (530)
portion_intra_predicted_blocks_area indicates the portion of area covered by intra predicted blocks in the pictures of the specified period using 4x4 granularity and is defined as follows:
	(531)
NumIntraPredictedBlocks is the number of intra predicted blocks in the specified period using 8x8 granularity. At the encoder side, it is computed as follows:

(532)
where NumIntraPredicted8x8Blocks, NumIntraPredicted16x16Blocks, NumIntraPredicted32x32Blocks and NumIntraPredicted64x64Blocks are the number of intra predicted 8x8, 16x16, 32x32 and 64x64 blocks respectively, in the specified period.
NumIntraPredictedBlocks is derived from portion_intra_predicted_blocks_area and TotalNum4x4BlocksInPeriod in the decoder.
portion_planar_blocks_in _intra_area – indicates the portion of planar blocks area in the intra predicted area in the specified period and is defined as follows:
	(533)
When not present, is equal to 0.
NumPlanarPredictedBlocks is the number of intra planar predicted blocks in the specified period using 4x4 granularity. At the encoder side, it is computed as follows:

(534)
where NumPlanarPredicted4x4Blocks, NumPlanarPredicted8x8Blocks, NumIntraPredicted16x16Blocks, NumIntraPredicted32x32Blocks and NumIntraPredicted64x64Blocks are the number of intra planar predicted 4x4, 8x8, 16x16, 32x32 and 64x64 blocks respectively, in the specified period.
NumPlanarPredictedBlocks is derived from portion_planar_blocks_in_intra_area and NumIntraPredictedBlocks in the decoder.
portion_dc_blocks_in_intra_area indicates the portion of DC blocks area in the intra predicted area in the specified period and is defined as follows:
	(535)
When not present, is equal to 0.
NumDCPredictedBlocks is the number of intra DC predicted blocks in the specified period using 4x4 granularity. At the encoder side, it is computed as follows:

(536)
where NumDCPredicted4x4Blocks, NumDCPredicted8x8Blocks, NumDCPredicted16x16Blocks, NumDCPredicted32x32Blocks and NumDCPredicted64x64Blocks are the number of intra DC predicted NumDCPredictedBlocks is derived from portion_dc_blocks_in_intra_area and NumIntraPredictedBlocks in the decoder. 4x4, 8x8, 16x16, 32x32 and 64x64 blocks respectively, in the specified period.
portion_angular_hv_blocks_in_intra_area indicates the portion of angular horizontal or vertical blocks area in the intra predicted area in the specified period and is defined as follows:
	(537)
When not present, is equal to 0.
NumAngularHVPredictedBlocks is the number of intra angular horizontally or vertically predicted blocks in the specified period using 4x4 granularity. At the encoder side, it is computed as follows:

(538)
where NumAngularHVPredicted4x4Blocks, NumAngularHVPredicted8x8Blocks, NumAngularHVPredicted16x16Blocks, NumAngularHVPredicted32x32Blocks and NumAngularHVCPredicted64x64Blocks are the number of intra angular horizontally or vertically predicted 4x4, 8x8, 16x16, 32x32 and 64x64 blocks respectively, in the specified period.
NumAngularHVPredictedBlocks is derived from portion_angular_hv_blocks_in_intra_area and NumIntraPredictedBlocks in the decoder.
portion_blocks_a_c_d_n_filterings indicates the portion of prediction blocks whose luma samples position are located in sub-sample position a, c, d or n, as defined in Annex B of this document, in the specified period and is defined as follows:
	(539)
When not present, is equal to 0.
NumBlocksACDNFilterings is the number of prediction blocks whose luma samples position are located in sub-sample position a, c, d or n, as defined in Annex B of this document, in the specified period. It is derived from portion_blocks_a_c_d_n_filterings and TotalNum4x4Blocks in the decoder.
portion_blocks_h_b_filterings indicates the portion of prediction blocks whose luma samples position are located in sub-sample position h or b, as defined in Annex B of this document, in the specified period and is defined as follows:
	(540)
When not present, is equal to 0.
NumBlocksHBFilterings is the number of prediction blocks whose luma samples position are located in sub-sample position h or b, as defined in Annex B of this document, in the specified period.
It is derived from portion_blocks_h_b_filterings and TotalNum4x4Blocks in the decoder.
portion_blocks_f_i_k_q_filterings indicates the portion of prediction blocks whose luma samples position are located in sub-sample position f, I, k or q, as defined in Annex B of this document, in the specified period and is defined as follows:
	(541)
When not present, is equal to 0.
NumBlocksFIKQFilterings is the number of prediction blocks whose luma samples position are located in sub-sample position f, I, k or q as defined in Annex B of this document, in the specified period.
It is derived from portion_blocks_f_i_k_q_filterings and TotalNum4x4Blocks in the decoder.
portion_blocks_j_filterings indicates the portion of prediction blocks whose luma samples position are located in sub-sample position j, as defined in Annex B of this document, in the specified period and is defined as follows:
	(542)
When not present, is equal to 0.
NumBlocksJFilterings is the number of prediction blocks whose luma samples position are located in sub-sample position j, as defined in Annex B of this document, in the specified period.
It is derived from portion_blocks_j_filterings and TotalNum4x4Blocks in the decoder.
portion_blocks_e_g_p_r_filterings indicates the portion of prediction blocks whose luma blocks position are located in sub-sample position e, g, p or r, as defined in Annex B of this document, in the specified period and is defined as follows:
	(543)
When not present, is equal to 0.
NumBlocksEGPRFilterings is the number of prediction blocks whose luma samples position are located in sub-sample position e, g, p or r, as defined in Annex B of this document, in the specified period.
It is derived from portion_blocks_e_g_p_r_filterings and TotalNum4x4Blocks in the decoder.
portion_deblocking_instances indicates the portion of deblocking filtering instances, as defined in the Terms and definitions of this document, in the specified period and is defined as follows:
	(544)
ChromaFormatMultiplier depends on the HEVC variables separate_colour_plane_flag and chroma_format_idc as shown in the Table 4following table.

[bookmark: _Ref78453078]Table 4 – specification of ChromaFormatMultiplier for HEVC
	ChromaFormatMultiplier
	separate_colour_plane_flag
	chroma_format_idc
	Comment

	1
	0
	0
	monochrome

	1.5
	0
	1
	4:2:0 sampling

	2
	0
	2
	4:2:2 sampling

	3
	0
	3
	4:4:4 sampling

	3
	1
	3
	separate colour
plane

NumDeblockingInstances is the number of deblocking filtering instances in the specified period. It is derived from portion_deblocking_instances, TotalNum4x4Blocks and ChromaFormatMultiplier in the decoder.
max_num_slices_tiles_minus1 specifies the maximum number between the number of slices and the number of tiles in the associated picture.
first_ctb_in_slice_or_tile[t] specifies the first Coding Tree Block (CTB) number in slice[t] or tile[t] in raster scan order.
TotalNum4x4BlocksInSliceOrTile[t] is the total number of 4x4 blocks in the slice[t] or tile[t] and is determined by the following computation after derivation of the Coding tree block raster and tile scanning conversion process (CtbAddrRsToTs) as specified in ISO/IEC 230082:2017, 6.5.1:
TotalNum4x4BlocksInSliceOrTile[t] =
(CtbAddrRsToTs[first_ctb_in_slice_or_tile [t+1]] – CtbAddrRsToTs[first_ctb_in_slice_or_tile[t]]) * (1 << (CtbLog2SizeY-2))2														(545)
except for the last slice or tile of the picture (t= num_max_slices_tiles_minus1), where it is determined by the following computation:
TotalNum4x4BlocksInSliceOrTile[t] =
(CtbAddrRsToTs[PicSizeInCtbsY] – CtbAddrRsToTs[first_ctb_in_slice_or_tile[t]])
* (1 << (CtbLog2SizeY-2))2												(546)
portion_non_zero_blocks_area[t] indicates the portion of area covered by blocks with non-zero transform coefficients values in the slice[t] or tile[t] using a 4using 4x4 blocks granularity and is defined as follows:
 	(547)
NumNonZeroBlocksInSliceOrTile[t] is the number of blocks with non-zero transform coefficients values in the slice[t] or tile[t] using 4x4 granularity. At the encoder side, it is computed as follows:

(548)
where NumNonZero4x4BlocksInSliceOrTile[t], NumNonZero8x8BlocksInSliceOrTile[t], NumNonZero16x16BlocksInSliceOrTile[t], NumNonZero32x32BlocksInSliceOrTiles[t] are the number of non-zero 4x4, 8x8, 16x16, 32x32 blocks in the slice[t] or tile[t] respectively.
NumNonZeroBlocksInSliceOrTile[t] is derived from portion_non_zero_blocks_area[t] and TotalNum4x4BlocksInSliceOrTile[t] in the decoder.
portion_8x8_blocks_in_non_zero_area[t] indicates the portion of 8x8 blocks area in the non-zero area in the slice[t] or tile[t] and is defined as follows:

 (549)
When not present, is equal to 0.
NumNonZero8x8BlocksInSliceOrTile[t] is the number of 8x8 blocks with non-zero transform coefficients values in the slice[t] or tile[t]. It is derived from portion_8x8_blocks_in_non_zero_area[t] and NumNonZeroBlocksInSliceOrTile[t] in the decoder.
portion_16x16_blocks_in_non_zero_area[t] indicates the portion of 16x16 blocks area in the non-zero area in the slice[t] or tile[t] and is defined as follows:

(550)
When not present, is equal to 0.
NumNonZero16x16BlocksInSliceOrTile[t] is the number of 16x16 blocks with non-zero transform coefficients values in the slice[t] or tile[t]. It is derived from portion_16x16_blocks_in_non_zero_area[t] and NumNonZeroBlocksInSliceOrTile[t] in the decoder.
portion_32x32_blocks_in_non_zero_area[t] indicates the portion of 32x32 blocks area in the non- zero area in the slice[t] or tile[t] and is defined as follows:
 (551)
When not present, is equal to 0.
NumNonZero32x32BlocksInSliceOrTile[t] is the number of 32x32 blocks with non-zero transform coefficients values in the slice[t] or tile[t]. It is derived from portion_32x32_blocks_in_non_zero_area[t] and NumNonZeroBlocksInSliceOrTile[t] in the decoder.
NumNonZero4x4BlocksInSliceOrTile[t] is the number of 4x4 blocks with non-zero transform coefficients values in the slice[t] or tile[t]. It is derived from NumNonZeroBlocksInSliceOrTile[t], NumNonZero8x8BlocksInSliceOrTile[t], NumNonZero16x16BlocksInSliceOrTile[t] and NumNonZero32x32BlocksInSliceOrTile[t] as follows in the decoder:

 (552)
portion_intra_predicted_blocks_area[t] indicates the portion of area covered by intra predicted blocks in the slice[t] or tile[t] using 8x8 granularity and is defined as follows:
	(553)
NumIntraPredictedBlocksInSliceOrTile[t] is the number of intra predicted blocks using 8x8 granularity in the slice[t] or tile[t]. At the encoder side, it is computed as follows:

(554)
where NumIntraPredicted8x8BlocksInSliceOrTile[t], NumIntraPredicted16x16BlocksInSliceOrTile[t], NumIntraPredicted32x32BlocksInSliceOrTiles[t] and NumIntraPredicted64x64BlocksInSliceOrTile[t] are the number of intra predicted 8x8, 16x16, 32x32 and 64x64 blocks in the slice[t] or tile[t] respectively.
NumIntraPredictedBlocksInSliceOrTile[t] is derived from portion_intra_predicted_blocks_area[t] and TotalNum4x4BlocksInSliceOrTile[t] in the decoder.
portion_planar_blocks_in_intra_area[t] indicates the portion of planar blocks in the intra predicted area the slice[t] or tile[t] and is defined as follows:

(555)
When not present, is equal to 0.
NumPlanarBlocksInSliceOrTile[t] is the number of intra planar predicted blocks in the slice[t] or tile[t] using 4x4 granularity. At the encoder side, it is computed as follows:

 (556)
where NumPlanar4x4Blocks[t], NumPlanar8x8Blocks[t], NumPlanar16x16Blocks[t], NumPlanar32x32Blocks[t] and NumPlanar64x64Blocks[t] are the number of intra planar predicted 4x4, 8x8, 16x16, 32x32 and 64x64 blocks in the slice[t] or tile[t] respectively.
NumPlanarBlocksInSliceOrTile[t] is derived from portion_planar_blocks_in_intra_area[t] and NumIntraPredictedBlocksInSliceOrTile[t] in the decoder.
portion_dc_blocks_in_intra_area[t] indicates the portion of DC blocks in the intra predicted area in the slice[t] or tile[t] and is defined as follows:

(557)
When not present, is equal to 0.
NumDCBlocksInSliceOrTile [t] is the number of intra DC predicted blocks in the slice[t] or tile[t] using 4x4 granularity. At the encoder side, it is computed as follows:

 (558)
where NumDC4x4Blocks[t], NumDC8x8Blocks[t], NumDC16x16Blocks[t], NumDC32x32Blocks[t] and NumDC64x64Blocks[t] are the number of intra DC predicted 4x4, 8x8, 16x16, 32x32 and 64x64 blocks in the slice[t] or tile[t] respectively.
NumDCBlocksInSliceOrTile[t] is derived from portion_dc_blocks_in_intra_area[t] and NumIntraPredictedBlocksInSliceOrTile[t] in the decoder.
portion_angular_hv_blocks_in_intra_area[t] indicates the portion of angular horizontal or vertical blocks in the intra predicted area in the slice[t] or tile[t] and is defined as follows:

(559)
When not present, is equal to 0.
NumAngularHVBlocksInSliceOrTile[t] is the number of intra angular horizontally or vertically predicted blocks in the slice[t] or tile[t] using 4x4 granularity. At the encoder side, it is computed as follows:

 (560)
where NumAngularHV4x4Blocks[t], NumAngularHV8x8Blocks[t], NumAngularHV16x16Blocks[t], NumAngularHV32x32Blocks[t] and NumAngularHV64x64Blocks[t] are the number of intra angular horizontally or vertically predicted 4x4, 8x8, 16x16, 32x32 and 64x64 blocks in the slice[t] or tile[t] respectively.
NumAngularHVBlocksInSliceOrTile[t] is derived from portion_angular_hv_blocks_in_intra_area[t] and NumIntraPredictedBlocksInSliceOrTile[t] in the decoder.
portion_blocks_a_c_d_n_filterings[t] indicates the portion of prediction blocks whose luma samples position are located in sub-sample position a, c, d or n, as defined in Annex B of this document, in the slice[t] or tile[t]. When not present, is equal to 0.
	(561)
NumBlocksACDNFilterings[t] is the number of prediction blocks whose luma samples position are located in sub-sample position a, c, d or n, as defined in Annex B of this document, in the slice[t] or tile[t]. It is derived from portion_blocks_a_c_d_n_filterings[t] and TotalNum4x4BlocksInSliceOrTile[t] in the decoder.
portion_blocks_h_b_filterings[t] indicates the portion of prediction blocks whose luma samples position are located in sub-sample position h or b, as defined in Annex B of this document, in the slice[t] or tile[t]. When not present, is equal to 0.
	(562)
NumBlocksHBFilterings[t] is the number of prediction blocks whose luma samples position are located in sub-sample position h or b, as defined in Annex B of this document, in the slice[t] or tile[t]. It is derived from portion_blocks_h_b_filterings[t] and TotalNum4x4BlocksInSliceOrTile[t] in the decoder.
portion_blocks_f_i_k_q_filterings[t] indicates the portion of prediction blocks whose luma samples position are located in sub-sample position f, i, k or q, as defined in Annex B of this document, in the slice[t] or tile[t]. When not present, is equal to 0.
	(563)
NumBlocksFIKQFilterings[t] is the number of prediction blocks whose luma samples position are located in sub-sample position f, i, k or q, as defined in Annex B of this document, in the slice[t] or tile[t]. It is derived from portion_blocks_f_i_k_q_filterings[t] and TotalNum4x4BlocksInSliceOrTile[t] in the decoder.
portion_blocks_j_filterings[t] indicates the portion of prediction blocks whose luma samples position are located in sub-sample position j, as defined in Annex B of this document, in the slice[t] or tile[t]. When not present, is equal to 0.
	(564)
NumBlocksJFilterings[t] is the number of prediction blocks whose luma samples position are located in sub-sample position j, as defined in Annex B of this document, in the slice[t] or tile[t]. It is derived from portion_blocks_j_filterings[t] and TotalNum4x4BlocksInSliceOrTile[t] in the decoder.
portion_blocks_e_g_p_r_filterings[t] indicates the portion of prediction blocks whose luma samples position are located in sub-sample position e, g, p or r, as defined in Annex B of this document, in the slice[t] or tile[t]. When not present, is equal to 0.
	(565)
NumBlocksEGPRFilterings[t] is the number of prediction blocks whose luma samples position are located in sub-sample position e, g, p or r, as defined in Annex B of this document, in the slice[t] or tile[t]. It is derived from portion_blocks_e_g_p_r_filterings[t] and TotalNum4x4BlocksInSliceOrTile[t] in the decoder.
portion_deblocking_instances[t] indicates the portion of deblocking filtering instances, as defined in the Terms and definitions of this document, in the slice[t] or tile[t].

(566)
NumDeblockingInstances[t] is the number of deblocking filtering instances in the slice[t] or tile[t]. It is derived from portion_deblocking_instances[t], TotalNum4x4BlocksInSliceOrTile[t] and ChromaFormatMultiplier in the decoder.

VVC semantics
The semantics of various terms are defined below.
period_type specifies the type of upcoming period over which the complexity metrics are applicable and is defined in the Table 5.

[bookmark: _Ref78453127]Table 5 – specification of period_type for VVC
	Value
	Description

	0x00
	complexity metrics are applicable to a single picture

	0x01
	complexity metrics are applicable to all pictures in decoding order, up to (but not including) the picture containing the next I slice

	0x02
	complexity metrics are applicable to all pictures over a specified time interval in seconds

	0x03
	complexity metrics are applicable over a specified number of pictures counted in decoding order

	0x04
	complexity metrics are applicable to a single picture with slice or tile granularity

	0x05
	complexity metrics are applicable to a single picture with subpicture granularity

	0x06
	complexity metrics are applicable to all pictures in decoding order, up to (but not including) the picture containing the next I slice, with subpicture granularity

	0x07
	complexity metrics are applicable over a specified time interval in seconds, with subpicture granularity

	0x08
	complexity metrics are applicable over a specified number of pictures counted in decoding order, with subpicture granularity

	0x09-0xFF
	reserved

Editorial Note (to be done)
· Investigate whether period_type values currently specified are future-proof (possible addition of values for addressing multi-layer coding option)

num_seconds indicates the number of seconds over which the complexity metrics are applicable when period_type is 2.
num_pictures specifies the number of pictures, counted in decoding order, over which the complexity metrics are applicable when period_type is 3.
NumPicsInPeriod is the number of pictures in the specified period. When period_type is 0, then NumPicsInPeriod is 1. When period_type is 1, then NumPicsInPeriod is determined by counting the pictures in decoding order up to (but not including) the one containing the next I slice. When period_type is 2, then NumPicsInPeriod is determined from the frame rate. When period_type is 3, then NumPicsInPeriod is equal to num_pictures.
TotalNum4BlocksInPeriod is the total number of 4-samples blocks that are coded in the specified period.
It is determined by the following computation:
	(567)
where TotalNum4BlocksPic(n) is derived for the nth picture within the specified period, where 1 <= n <= NumPicsInPeriod from VVC variables PicSizeInCtbsY and CtbLog2SizeY specified for the decoding process of the nth picture within the specified period, as follows
TotalNum4BlocksPic(n) = PicSizeInCtbsY * (1 << (CtbLog2SizeY – 1))2	(568)
ChromaFormatMultiplier depends on the VVC variable sps_chroma_format_idc as shown in the Table 6.

[bookmark: _Ref78453165]Table 6 – specification of ChromaFormatMultiplier for VVC
	ChromaFormatMultiplier
	sps_chroma_format_idc
	Comment

	1
	0
	monochrome

	1.5
	1
	4:2:0 sampling

	2
	2
	4:2:2 sampling

	3
	3
	4:4:4 sampling

MaxNumDeblockingInstances is the maximum number of deblocking filtering instances in the specified period. It is determined by the following computation:
	 (569)
where MaxNumDeblockingInstancesPic(n) is derived for the nth picture within the specified period, where 1 <= n <= NumPicsInPeriod from VVC variables PicSizeInCtbsY, PicWidthInCtbsY, PicHeightInCtbsY and CtbLog2SizeY specified for the decoding process of the nth picture within the specified period, as follows
MaxNumDeblockingInstancesPic(n) = ChromaFormatMultiplier *
 (PicWidthInCtbsY * PicHeightInCtbsY – 2 * (PicWidthInCtbsY + PicHeightInCtbsY)) *
 (1 << CtbLog2SizeY)2	(570)
portion_non_zero_blocks_area indicates the portion of area covered by blocks with non-zero transform coefficients values, in the pictures of the specified period, using 4-samples granularity and is defined as follows:
	(571)
where NumNonZeroBlocks is the number of blocks with non-zero transform coefficients values in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

(572)
where NumNonZeroBlocks_X is the number of blocks with non-zero transform coefficients values, for transform blocks with number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, respectively, in the specified period.
NumNonZeroBlocks is derived from portion_non_zero_blocks_area and TotalNum4BlocksInPeriod in the decoder.
portion_non_zero_4_8_16_blocks_area indicates the portion of 4-, 8- and 16-samples blocks area in the non-zero area in the specified period and is defined as follows:
	(573)
When not present, portion_non_zero_4_8_16_blocks_area is set equal to 0.
NumNonZero4_8_16_Blocks is the number of 4-, 8- and 16-samples transform blocks with non-zero transform coefficients values in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

(574)
It is derived from portion_non_zero_4_8_16_blocks_area and NumNonZeroBlocks in the decoder.
portion_non_zero_32_64_128_blocks_area indicates the portion of 32-, 64- and 128-samples blocks area in the non-zero area in the specified period and is defined as follows:
	(575)
When not present, portion_non_zero_32_64_128_blocks_area is set equal to 0.
NumNonZero32_64_128_Blocks is the number of 32-, 64- and 128-samples transform blocks with non-zero transform coefficients values in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

	(576)
It is derived from portion_non_zero_32_64_128_blocks_area and NumNonZeroBlocks in the decoder.
portion_non_zero_256_512_1024_blocks_area indicates the portion of 256-, 512- and 1024-samples blocks area in the non-zero area in the specified period and is defined as follows:
	(577)
When not present, portion_non_zero_256_512_1024_blocks_area is set equal to 0.
NumNonZero256_512_1024_Blocks is the number of 256-, 512- and 1024-samples transform blocks with non-zero transform coefficients values in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

	(578)
It is derived from portion_non_zero_256_512_1024_blocks_area and NumNonZeroBlocks in the decoder.
portion_non_zero_2048_4096_blocks_area indicates the portion of 2048- and 4096-samples blocks area in the non-zero area in the specified period and is defined as follows:
	(579)
When not present, portion_non_zero_2048_4096_blocks_area is set equal to 0.
NumNonZero2048_4096_Blocks is the number of 2048- and 4096-samples transform blocks with non-zero transform coefficients values in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

	(580)
It is derived from portion_non_zero_2048_4096_blocks_area and NumNonZeroBlocks in the decoder.
portion_non_zero_transform_coefficients_area indicates the portion of area covered by non-zero transform coefficients in non-zero transform blocks in the pictures of the specified period, using 4-samples granularity and is defined as follows:
	(581)
NumNonZeroTransformCoefs is the area covered by non-zero transform coefficients in non-zero transform blocks in the specified period using 4-samples granularity.
NumNonZeroTransformCoefs is derived from portion_non_zero_transform_coefficients_area and NumNonZeroBlocks in the decoder.
portion_intra_predicted_blocks_area indicates the portion of area covered by intra predicted blocks in the pictures of the specified period using 4-samples granularity and is defined as follows:
	(582)
NumIntraPredictedBlocks is the number of intra predicted blocks in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

	(583)
Where NumIntraPredictedBlocks_X is the number of blocks using intra prediction, for number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the specified period.
NumIntraPredictedBlocks is derived from portion_intra_predicted_blocks_area and TotalNum4BlocksInPeriod in the decoder.
portion_planar_blocks_in_intra_area indicates the portion of intra planar predicted blocks area in the intra predicted area in the specified period and is defined as follows:
	(584)
When not present, is equal to 0.
NumPlanarPredictedBlocks is the number of intra planar predicted blocks in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

	(585)
Where NumIntraPlanarBlocks_X is the number of blocks using intra planar prediction, for number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the specified period.
NumPlanarPredictedBlocks is derived from portion_planar_blocks_in_intra_area and NumIntraPredictedBlocks in the decoder.
portion_dc_blocks_in_intra_area indicates the portion of intra DC predicted blocks area in the intra predicted area in the specified period and is defined as follows:
	(586)
When not present, is equal to 0.
NumDcPredictedBlocks is the number of intra DC predicted blocks in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

	(587)
Where NumIntraDcBlocks_X is the number of blocks using intra DC prediction, for number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the specified period.
NumDcPredictedBlocks is derived from portion_dc_blocks_in_intra_area and NumIntraPredictedBlocks in the decoder.
portion_hv_blocks_in_intra_area indicates the portion of intra horizontal and vertical directional predicted blocks area in the intra predicted area in the specified period and is defined as follows:
	(588)
When not present, is equal to 0.
NumHvPredictedBlocks is the number of intra horizontal and vertical directional predicted blocks in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

	(589)
Where NumIntraHvBlocks_X is the number of blocks using intra horizontal and vertical directional prediction, for number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the specified period.
NumHvPredictedBlocks is derived from portion_hv_blocks_in_intra_area and NumIntraPredictedBlocks in the decoder.
portion_mip_blocks_in_intra_area indicates the portion of intra MIP predicted blocks area in the intra predicted area in the specified period and is defined as follows:
	(590)
When not present, is equal to 0.
NumMipPredictedBlocks is the number of intra MIP predicted blocks in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

	(591)
Where NumIntraMipBlocks_X is the number of blocks using intra MIP prediction, for number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the specified period.
NumMipPredictedBlocks is derived from portion_mip_blocks_in_intra_area and NumIntraPredictedBlocks in the decoder.
portion_bi_and_gpm_predicted_blocks_area indicates the portion of area covered by inter bi-predicted or GPM-predicted blocks in the pictures of the specified period using 4-samples granularity and is defined as follows:
	(592)
NumBiAndGpmPredictedBlocks is the number of inter bi-predicted and GPM-predicted blocks in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:

	(593)
Where NumBiPredictedXBlocks are the number of blocks using inter bi-prediction or GPM prediction, for number of samples from X=4,8,16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the specified period.
NumBiPredictedXBlocks is derived from portion_bi_and_gpm_predicted_blocks_area and TotalNum4BlocksInPeriod in the decoder.
portion_deblocking_instances indicates the portion of deblocking filtering instances, as defined in the Terms and definitions of this document, in the specified period and is defined as follows:
	(594)
NumDeblockingInstances is the number of deblocking filtering instances in the specified period. It is derived from portion_deblocking_instances and MaxNumDeblockingInstances in the decoder.
portion_sao_filtered_blocks indicates the portion of SAO filtered blocks in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:
	(595)
NumSaoFilteredBlocks is the number of SAO filtered blocks in the specified period using 4-samples granularity. It is derived from portion_sao_filtered_blocks, TotalNum4BlocksInPeriod in the decoder.
portion_alf_filtered_blocks indicates the portion of ALF filtered blocks in the specified period using 4-samples granularity. At the encoder side, it is computed as follows:
	(596)
NumAlfFilteredBlocks is the number of ALF filtered blocks in the specified period using 4-samples granularity. It is derived from portion_alf_filtered_blocks, TotalNum4BlocksInPeriod in the decoder.
max_num_segments_minus1 specifies the maximum number between the number of slices, the number of tiles and the number of subpictures in the associated picture.
first_ctb_in_segment[t] specifies the first Coding Tree Block (CTB) number in slice[t] or tile[t] or subpicture[t] in raster scan order.
TotalNum4BlocksInSegment[t] is the total number of 4-samples blocks in the slice[t] or tile[t] or subpicture[t] and MaxNumDbfInstancesInSegment[t] is the maximum number of deblocking instances in the slice[t] or tile[t] or subpicture[t]. TotalNum4BlocksInSegment[t] and MaxNumDbfInstancesInSegment[t] are determined by the following computation.
· If period_type is equal to 4, TotalNum4BlocksInSegment[t] is derived as follows from the syntax elements sps_subpic_ctu_top_left_x and sps_subpic_ctu_top_left_y specified in the clause “Sequence parameter set RBSP semantics” in ISO/IEC 23090-3:
· ctbAddrX is set equal to first_ctb_in_segment[t]
· tileColIdx is set equal to ctbToTileColIdx[ctbAddrX]
· tileRowIdx is set equal to ctbToTileRowIdx[ctbAddrX]
· tileWidth is set equal to ColWidthVal[tileColIdx] << (CtbLog2SizeY – 1)
· tileHeight is set equal to RowHeightVal [tileRowIdx] << (CtbLog2SizeY – 1)
· TotalNum4BlocksInSegment[t] is set equal to (tileWidth * tileHeight)
· MaxNumDbfInstancesInSegment[t] is set equal to ChromaFormatMultiplier * (tileWidth * tileHeight – 2 * (tileWidth + tileHeight))
· Otherwise if period_type is equal to 5, TotalNum4BlocksInSegment[t] is derived as follows from the parameters ctbToTileColIdx, ctbToTileRowIdx, ColWidthVal and RowHeightVal specified in the clause “CTB raster scanning, tile scanning, and subpicture scanning processes” in ISO/IEC 23090-3:
· subpicWidth is set equal to (1 + sps_subpic_width_minus1[t]) << (CtbLog2SizeY – 1)
· subpicHeight is set equal to (1 + sps_subpic_height_minus1[t]) << (CtbLog2SizeY – 1)
· TotalNum4BlocksInSegment[t] is set equal to (subpicWidth * subpicHeigh)
· MaxNumDbfInstancesInSegment[t] is set equal to ChromaFormatMultiplier * (subpicWidth * subpicHeight – 2 * (subpicWidth + subpicHeight))

portion_non_zero_blocks_area[t] indicates the portion of area covered by blocks with non-zero transform coefficients values, in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
 	(597)
where NumNonZeroBlocksInSegment[t] is the number of blocks with non-zero transform coefficients values, in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(598)
where NumNonZeroBlocksInSegment_X[t] is the number of blocks with non-zero transform coefficients values, in the slice[t] or tile[t] or subpicture[t], for blocks with number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, respectively.
NumNonZeroBlocksInSegment[t] is derived from portion_non_zero_blocks_area[t] and TotalNum4BlocksInSegment[t] in the decoder.
portion_non_zero_4_8_16_blocks_area[t] indicates the portion of 4-, 8- and 16-samples blocks area in the non-zero area in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(599)
When not present, portion_non_zero_4_8_16_blocks_area[t] is set equal to 0.
NumNonZero4_8_16_BlocksInSegment[t] is the number of 4-, 8- and 16-samples blocks with non-zero transform coefficients values in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(5100)
It is derived from portion_non_zero_4_8_16_blocks_area[t] and NumNonZeroBlocksInSegment[t] in the decoder.
portion_non_zero_32_64_128_blocks_area[t] indicates the portion of 32-, 64- and 128-samples blocks area in the non-zero area in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(5101)
When not present, portion_non_zero_32_64_128_blocks_area[t] is set equal to 0.
NumNonZero32_64_128_BlocksInSegment[t] is the number of 32-, 64- and 128-samples blocks with non-zero transform coefficients values in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(5102)
It is derived from portion_non_zero_32_64_128_blocks_area[t] and NumNonZeroBlocksInSegment[t] in the decoder.
portion_non_zero_256_512_1024_blocks_area[t] indicates the portion of 256-, 512- and 1024-samples blocks area in the non-zero area in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(5103)
When not present, portion_non_zero_256_512_1024_blocks_area[t] is set equal to 0.
NumNonZero256_512_1024_BlocksInSegment[t] is the number of 256-, 512- and 1024-samples blocks with non-zero transform coefficients values in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(5104)
It is derived from portion_non_zero_256_512_1024_blocks_area[t] and NumNonZeroBlocksInSegment[t] in the decoder.
portion_non_zero_2048_4096_blocks_area[t] indicates the portion of 2048- and 4096-samples blocks area in the non-zero area in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(5105)
When not present, portion_non_zero_2048_4096_blocks_area[t] is set equal to 0.
NumNonZero2048_4096_BlocksInSegment[t] is the number of 2048- and 4096-samples blocks with non-zero transform coefficients values in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(5106)
It is derived from portion_non_zero_2048_4096_blocks_area[t] and NumNonZeroBlocksInSegment[t] in the decoder.
portion_non_zero_transform_coefficients_area[t] indicates the portion of area covered by non-zero transform coefficients in non-zero transform blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	
	(5107)
NumNonZeroTransformCoefs[t] is the area covered by non-zero transform coefficients in non-zero blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity.
NumNonZeroTransformCoefs[t] is derived from portion_non_zero_transform_coefficients_area[t] and NumNonZeroBlocksInSegment[t] in the decoder.
portion_intra_predicted_blocks_area[t] indicates the portion of area covered by intra predicted blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(5108)
NumIntraPredictedBlocks[t] is the number of intra predicted blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(5109)
Where NumIntraPredictedBlocks_X[t] is the number of blocks using intra prediction, for number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the slice[t] or tile[t] or subpicture[t].
NumIntraPredictedBlocks[t] is derived from portion_intra_predicted_blocks_area[t] and TotalNum4BlocksInSegment[t] in the decoder.
portion_planar_blocks_in_intra_area[t] indicates the portion of intra planar predicted blocks area in the intra predicted area in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(5110)
When not present, is equal to 0.
NumPlanarPredictedBlocks[t] is the number of intra planar predicted blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(5111)
Where NumIntraPlanarBlocks_X[t] is the number of blocks using intra planar prediction, for number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the slice[t] or tile[t] or subpicture[t].
NumPlanarPredictedBlocks[t] is derived from portion_planar_blocks_in_intra_area[t] and NumIntraPredictedBlocks[t] in the decoder.
portion_dc_blocks_in_intra_area[t] indicates the portion of intra DC predicted blocks area in the intra predicted area in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(5112)
When not present, is equal to 0.
NumDcPredictedBlocks[t] is the number of intra DC predicted blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(5113)
Where NumIntraDcBlocks_X[t] is the number of blocks using intra DC prediction, for number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the slice[t] or tile[t] or subpicture[t].
NumDcPredictedBlocks[t] is derived from portion_dc_blocks_in_intra_area[t] and NumIntraPredictedBlocks[t] in the decoder.
portion_hv_blocks_in_intra_area[t] indicates the portion of intra horizontal and vertical directional predicted blocks area in the intra predicted area in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(5114)
When not present, is equal to 0.
NumHvPredictedBlocks[t] is the number of intra horizontal and vertical directional predicted blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(5115)
Where NumIntraHvBlocks_X[t] is the number of blocks using intra horizontal and vertical directional prediction, for number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the slice[t] or tile[t] or subpicture[t].
NumHvPredictedBlocks[t] is derived from portion_hv_blocks_in_intra_area[t] and NumIntraPredictedBlocks[t] in the decoder.
portion_mip_blocks_in_intra_area[t] indicates the portion of intra MIP predicted blocks area in the intra predicted area in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(5116)
When not present, is equal to 0.
NumMipPredictedBlocks[t] is the number of intra MIP predicted blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(5117)
Where NumIntraMipBlocks_X[t] is the number of blocks using intra MIP prediction, for number of samples from X=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the slice[t] or tile[t] or subpicture[t].
NumMipPredictedBlocks[t] is derived from portion_mip_blocks_in_intra_area[t] and NumIntraPredictedBlocks[t] in the decoder.
portion_bi_and_gpm_predicted_blocks_area[t] indicates the portion of area covered by inter bi-predicted or GPM-predicted blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(5118)
NumBiAndGpmPredictedBlocks[t] is the number of inter bi-predicted and GPM-predicted blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:

	(5119)
Where NumBiPredictedXBlocks[t] are the number of blocks using inter bi-predicted prediction, for number of samples from X=16, 32, 64, 128, 256, 512, 1024, 2048, 4096, in the slice[t] or tile[t] or subpicture[t].
NumBiPredictedXBlocks[t] is derived from portion_bi_and_gpm_predicted_blocks_area[t] and TotalNum4BlocksInSegment[t] in the decoder.
portion_deblocking_instances[t] indicates the portion of deblocking filtering instances, as defined in the Terms and definitions of this document, in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity and is defined as follows:
	(5120)
NumDeblockingInstances[t] is the number of deblocking filtering instances in the specified period. It is derived from portion_deblocking_instances[t] and MaxNumDbfInstancesInSegment[t] in the slice[t] or tile[t] or subpicture[t].
portion_sao_filtered_blocks[t] indicates the portion of SAO filtered blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:
	(5121)
NumSaoFilteredBlocks[t] is the number of SAO filtered blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. It is derived from portion_sao_filtered_blocks[t], TotalNum4BlocksInSegment[t] in the decoder.
portion_alf_filtered_blocks[t] indicates the portion of ALF filtered blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. At the encoder side, it is computed as follows:
	(5122)
NumAlfFilteredBlocks[t] is the number of ALF filtered blocks in the slice[t] or tile[t] or subpicture[t], using 4-samples granularity. It is derived from portion_alf_filtered_blocks[t], TotalNum4BlocksInSegment[t] in the decoder.

Editorial Notes (to be done)
· Check minimum/maximum block sizes for transform-related syntax elements
· Check minimum/maximum block sizes for inter-prediction related syntax elements

[bookmark: _Toc63261108]Interactive signalling for remote decoder-power reduction
General
For point-to-point video conferencing, each device contains a transmitter and a receiver. A local device sends metadata that instructs the remote device to modify the decoding complexity of the bitstream and thus reduce local decoder-power consumption.
Syntax
The syntax is as follows:
	
	Size (bits)
	Descriptor

	 dec_ops_reduction_req
	8
	signed integer

Signalling
The transmitter in each device sends a dec_ops_reduction_req (DOR-Req) message to the attention of the remote encoder. This message requests the remote encoder to adjust its encoding parameters so that ideally, when the local decoder decodes the bitstream, the power saving of the local decoder will match the power saving implied by the DOR-Req message.
Semantics
dec_ops_reduction_req indicates the requested percentage reduction of local decoding operations relative to the local decoding operations since the last dec_ops_reduction_req was sent to the transmitter, or since the start of the video session, if no earlier dec_ops_reduction_req was sent. The percentage will be expressed as a signed integer. A negative percentage means an increase of decoding operations. dec_ops_reduction_req is an integer in the interval [-100, 100].

Editorial Note (to be done)
· Investigation of signalling additional syntax elements will be made, for instance, indicative of requested bitrate, resolution, frame rate, for finer control

[bookmark: _Toc63261109]Display power reduction using display adaptation
[bookmark: _Toc63261110]General
With respect to the functional architecture, Display Adaptation (DA) provides Green Metadata comprised of RGB-component statistics and quality indicators. The statistics are used to set display controls in the presentation subsystem so that desired quality levels and corresponding display power reductions are attained.
[bookmark: _Toc63261111]Syntax
Systems without a signalling mechanism from the receiver to the transmitter
The following message format is used to send metadata from the transmitter to the receiver:
	
	Size (bits)
	Descriptor

		num_constant_backlight_voltage_time_intervals
	2
	 unsigned integer

		num_max_variations
	2
	 unsigned integer

		num_quality_levels
	4
	 unsigned integer

		for (j = 0; j < num_max_variations; j++) {
	
	

			max_variation[j]
	8
	 unsigned integer

		}
	
	

		for (k = 0; k < num_constant_backlight_voltage_time_intervals; k++) {
	
	

			constant_backlight_voltage_time_interval[k]
	16
	 unsigned integer

			for (j = 0; j < num_max_variations; j++) {
	
	

				lower_bound[k][j]
	8
	 unsigned integer

				if (lower_bound[k][j] > 0) {
	
	

					upper_bound[k][j]
	8
	 unsigned integer

				}
	
	

				rgb_component_for_infinite_psnr[k][j]
	8
	 unsigned integer

				for (i = 1; i < = num_quality_levels; i++) {
	
	

					max_rgb_component[k][j][i]

	8
	 unsigned integer

					scaled_psnr_rgb[k][j][i]
	8
	 unsigned integer

				}
	
	

			}
	
	

		}
	
	

Systems with a signalling mechanism from the receiver to the transmitter
The receiver first uses the following message format to signal information to the transmitter:
	
	Size (bits)
	Descriptor

	constant_backlight_voltage_time_interval
	16
	unsigned integer

	max_variation
	8
	unsigned integer

The transmitter then uses the message format shown below to then signal metadata to the receiver:
	
	Size (bits)
	Descriptor

		num_quality_levels
	4
	unsigned integer

		lower_bound
	8
	unsigned integer

		if (lower_bound > 0)
	
	

			upper_bound
	8
	unsigned integer

		rgb_component_for_infinite_psnr
	8
	unsigned integer

		for (i = 1; i <= num_quality_levels; i++) {
	
	

			max_rgb_component[i]

	8
	unsigned integer

			scaled_psnr_rgb[i]
	8
	unsigned integer

		}
	
	

[bookmark: _Toc63261112]Signalling
Systems without a signalling mechanism from the receiver to the transmitter
Green Metadata can be carried as specified in ISO/IEC 138181 or it can be carried in metadata tracks within the ISO Base Media File Format (ISO/IEC 1449612), as specified in ISO/IEC 2300110. Using the format in 6.2.1, the transmitter sends a message to the receiver. The DA metadata is applicable to the presentation subsystem until the next message containing DA metadata arrives.
	Systems with a signalling mechanism from the receiver to the transmitter
Using the first message format described in 6.2.2, the receiver first signals constant_backlight_voltage_time_interval and max_variation to the transmitter. The transmitter then uses the second message format in 6.2.2 to send a message to the receiver. The DA metadata is applicable to the presentation subsystem until the next message containing DA metadata arrives.
[bookmark: _Toc63261113]Semantics
num_constant_backlight_voltage_time_intervals indicates the number of constant backlight/voltage time intervals for which metadata is provided in the bitstream.
num_max_variations indicates the number of maximum variations for which metadata is provided in the bitstream.
num_quality_levels indicates the number of quality levels that are enabled by the metadata, excluding the NQLOP.
max_variation[j] indicates the maximal change between backlight values of two successive frames relative to the backlight value of the earlier frame. The backlight value for a frame is the value of BacklightScalingFactor[k][j][i] for that frame. BacklightScalingFactor[k][j][i] is derived from max_rgb_component[k][j][i] and PeakSignal, as max_rgb_component[k][j][i]/PeakSignal, for the kth constant_backlight_voltage_time_interval, jth max_variation and ith quality level. PeakSignal variable is the peak signal as defined in Terms and Definitions of this document.
max_variation is in the range [0.001, 0.1] and is normalized to one byte by rounding after multiplying by 2 048. This is the jth maximal backlight change for which metadata is provided in the bitstream, where 0 <= j < num_max_variations.
constant_backlight_voltage_time_interval[k] indicates the minimum time interval, in milliseconds, that shall elapse before the backlight can be updated after the last backlight update. This is the kth minimum time interval for which metadata is provided in the bitstream, where 0 <= k < num_constant_backlight_voltage_time_intervals.
lower_bound[k][j] indicates if lower_bound[k][j] is greater than zero, then metadata for contrast enhancement is available at the lowest quality level, for the kth constant_backlight_voltage_time_interval and jth max_variation. If lower_bound[k][j] = 0, then contrast-enhancement metadata is unavailable.
upper_bound[k][j] indicates for the kth constant_backlight_voltage_time_interval and jth max_variation, if lower_bound[k][j] is greater than zero, then contrast enhancement is performed as follows: All RGB components of reconstructed frames that are less than or equal to lower_bound[k][j] are set to zero and all RGB components that are greater than or equal to upper_bound[k][j] are saturated to PeakSignal. The RGB components in the range (lower_bound[k][j], upper_bound[k][j]) are mapped linearly onto the range (0, PeakSignal).
rgb_component_for_infinite_psnr[k][j] indicates for the kth constant_backlight_voltage_time_interval and jth max_variation, the largest RGB component (as defined in 3.1) in the reconstructed frames. Therefore, ScaledFrames[k][j][0] are identical to the reconstructed frames. The rgb_component_for_infinite_psnr[k][j] defines a No-Quality-Loss Operating Point (NQLOP) and consequently ScaledFrames[k][j][0] will have a PSNR of infinity relative to the reconstructed frames.
max_rgb_component[k][j][i] indicates for the kth constant_backlight_voltage_time_interval, jth max_variation and ith quality level, the maximum RGB component (as defined in 3.1) that will be retained in the frames, where 1 <= i <= num_quality_levels. Note that max_rgb_component[k][j][0] = rgb_component_for_infinite_psnr[k][j].
scaled_psnr_rgb[k][j][i] indicates the PSNR of ScaledFrames[k][j][i] relative to the reconstructed frames. ScaledFrames[k][j][i] are for the kth constant_backlight_voltage_time_interval, jth max_variation and ith quality level, the frames obtained from the reconstructed frames by saturating to max_rgb_component[k][j][i] all RGB components that are greater than max_rgb_component[k][j][i], where 0 <= i <= num_quality_levels.
The PSNR is defined as follows:
scaled_psnr_rgb[k][j][i] =
 (6-1)
for 0 < i <= num_quality_levels,
where
	
	width
	is the width of a video frame;

	
	height
	is the height of a video frame;

	
	Ncolour
	is the number of colour channels. For RGB colourspace, Ncolour = 3;

	
	Nframes
	is the number of frames in the reconstructed frames;

	
	Nc,n (l)
	is the number of RGB components that are set to l in the nth frame of colour-channel c in reconstructed frames;

	
	Xs
	is max_rgb_component[k][j][i].

Note that scaled_psnr_rgb[k][j][0] is associated with the NQLOP. It is not transmitted, but understood to be mathematically infinite.

[bookmark: _Toc63261114]Energy-efficient media selection
[bookmark: _Toc63261115]General
The Green Metadata specified in this clause can enable a client in an adaptive streaming session, such as DASH, to determine decoder and display power-saving characteristics of available video Representations and to select the Representation with the optimal quality for a given power-saving.
Two types of Green Metadata are defined as follows:
—	decoder-power indication metadata gives the potential decoder power saving of each available Representation of a video Segment;
—	display-power indication metadata gives the maximum potential display power saving of a video Segment for a specified number of quality levels. This metadata is computed without any constraint on the maximal backlight change between two successive frames and with no practical restriction on the minimum time interval between backlight updates. Therefore, using the semantics of 6.4, the metadata is produced with the assumptions that max_variation is mathematically infinite and that constant_backlight_voltage_time_interval is less than or equal to the interval between two successive frames.
[bookmark: _Toc63261116]Syntax
The decoder-power indication metadata is a pair of decoder operations reduction ratios:
	
	Size (bits)
	Descriptor

	dec_ops_reduction_ratio_from_max
	8
	unsigned integer

	dec_ops_reduction_ratio_from_prev
	16
	signed integer

The display-power indication metadata contains a list of ms_num_quality_levels pairs, as shown below:
	
	Size (bits)
	Descriptor

		ms_num_quality_levels
	4
	unsigned integer

		ms_rgb_component_for_infinite_psnr
	8
	unsigned integer

		for (i = 1; i <= ms_num_quality_levels; i++) {
	
	

			ms_max_rgb_component[i]

	8
	unsigned integer

			ms_scaled_psnr_rgb[i]
	8
	unsigned integer

		}
	
	

[bookmark: _Toc63261117]Signalling
Green Metadata can be carried in metadata tracks within the ISO Base Media File Format (ISO/IEC 1449612). Such carriage is specified in ISO/IEC 2300110.
In the context of DASH delivery, a specific Adaptation Set within the MPD can define the available Green Metadata Representations and their association to the available media Representations, using the signalling mechanisms specified in ISO/IEC 230091:2014/Amd 2 and ISO/IEC 230093:2014/Amd 1 and illustrated in Annex B.

[bookmark: _Toc63261118]Semantics
Decoder-power indication metadata semantics
dec_ops_reduction_ratio_from_max(i) indicates the percentage by which decoding operations are reduced in the ith Representation compared to the most demanding Representation of the current video Segment:
	(7-1)
MaxNumDecOps is the estimated number of decoding operations required for the most demanding Representation of the current video Segment.
NumDecOps(i) is the estimated number of decoding operations required for the ith Representation of the current video Segment.
dec_ops_reduction_ratio_from_prev(i) indicates the percentage by which decoding operations are reduced in the current video Segment compared to the previous video Segment for the ith Representation in a given Period. A negative value means an increase in decoding operations:
	(7-2)
If the current video Segment is the first Segment of a Period, then dec_ops_reduction_ratio_from_prev(i) = 0.
NumPrevDecOps(i) is the estimated number of decoding operations required for the ith Representation of the previous video Segment in a given Period. If the current video Segment is the first segment of a Period, then NumPrevDecOps(i) = NumDecOps(i).

Display-power indication metadata semantics
ms_num_quality_levels indicates the number of quality levels that are enabled by the metadata.
ms_rgb_component_for_infinite_psnr indicates the average, over the N reconstructed frames of the video Segment, of the largest RGB component (as defined in 3.1) in each of the reconstructed frames.
ms_max_rgb_component[i] indicates for the ith quality level (1 <= i <= num_quality_levels), the average, over the N reconstructed frames of the video Segment, of the maximum RGB component that will be retained in each of the reconstructed frames. Note that ms_max_rgb_component[0] = ms_rgb_component_for_infinite_psnr.
ms_scaled_psnr_rgb[i] indicates for the ith quality level (1 <= i <= num_quality_levels), the average, over the N reconstructed frames in the video segment, of scaled_psnr_rgb[i] computed for each frame as defined in 6.4, with Nframes = 1. Note that ms_scaled_psnr_rgb[0] is associated with the NQLOP. It is not transmitted, but understood to be mathematically infinite.

[bookmark: _Toc63261119]Metrics for quality recovery after low-power encoding
[bookmark: _Toc63261120]General
An encoder can achieve power reduction by encoding alternating high-quality and low-quality Segments, in a segmented delivery mechanism such as DASH. The power reduction occurs because low-complexity encoding mechanisms are used to produce the low-quality Segments. A metric describing the quality of the last picture of each Segment is delivered as metadata to the decoder. The metric is utilized, by the decoder, in conjunction with the last frame of the prior high-quality Segment to enhance the quality of the low-quality Segment and, thereby, ameliorate any negative visual impact. Annex B describes in detail how cross-segment decoding may be used to improve the quality of the low-quality Segments.
[bookmark: _Toc63261121]Syntax
For AVC and HEVC bitstreams, Thethe encoder embeds the following message in the last picture of each Segment using the following syntax:
	
	Size (bits)
	Descriptor

	xsd_metric_type
	8
	unsigned integer

	xsd_metric_value
	16
	unsigned integer

For VVC bitstreams, the encoder embeds the following message in the last picture of each Segment using the following syntax:
	
	Size (bits)
	Descriptor

	xsd_metric_number_minus1
	4
	unsigned integer

	xsd_metric_type[i]
	8
	unsigned integer

	xsd_metric_value[i]
	16
	unsigned integer

[bookmark: _Toc63261122]Signalling
SEI messages can be used to signal Green Metadata in an AVC, HEVC or VVC bitstream. The Green Metadata SEI message payload type for AVC is specified in ISO/IEC 14496-10:2014/Amd. 2. The Green Metadata SEI message payload type for HEVC is specified in International Standard ISO/IEC 23008-2. The Green Metadata SEI message payload type for VVC is specified in International Standard ISO/IEC 23090-3.
The SEI message for Green Metadata can be used to signal the preceding message as explained in Annex A.
[bookmark: _Toc63261123]Semantics
AVC and HEVC Semantics
xsd_metric_type - indicates the type of the objective quality metric as shown in the table below. PSNR, as defined in ISO/IEC 2300110, is the only type currently supported.

Table 7 – specification of xsd_metric_type for AVC and HEVC
	Value
	Description

	0x00
	PSNR

	0x01–0xFF
	User-defined

xsd_metric_value - contains the metric value of the last picture of the Segment. When xsd_metric_type is 0, then the stored 16-bit unsigned integer xsd_metric_value, is interpreted as a floating-point PSNR value (in dB) as follows:

	(8.1)
VVC Semantics
xsd_metric_number_minus1 - xsd_metric_number_minus1 plus 1 indicates the number of objective quality metrics contained in the SEI message.
xsd_metric_type[i] - indicates the type of the objective quality metric for the objective quality metric of index i as shown in the table below. PSNR, as defined in ISO/IEC 2300110, SSIM, as defined in TBD, wPSNR and WS-PSNR, as defined in ISO/IEC TR 23002-8 are the only type currently supported.

Table 8 – specification of xsd_metric_type for VVC
	Value
	Description

	0x00
	PSNR

	0x01
	SSIM

	0x02
	wPSNR

	0x03
	WS-PSNR

	0x04-0xFF
	User-defined

xsd_metric_value[i] - contains the metric value of the last picture of the Segment for the objective quality metric of index i. When xsd_metric_type[i] is 0, then the stored 16-bit unsigned integer xsd_metric_value, is interpreted as a floating-point PSNR value (in dB) as follows:
	(8.2)
When xsd_metric_type[i] is 1, then the stored 16-bit unsigned integer sd_metric_type[i], is interpreted as a floating-point SSIM value (in dB) as follows:
	(8.3)
When xsd_metric_type[i] is 2, then the stored 16-bit unsigned integer sd_metric_type[i], is interpreted as a floating-point wPSNR value (in dB) as follows:
	(8.4)
When xsd_metric_type[i] is 3, then the stored 16-bit unsigned integer sd_metric_type[i], is interpreted as a floating-point WS-PSNR value (in dB) as follows:
	(8.5)
Editorial Notes (to be done)
· Add mathematical specification of the different quality metrics (psnr, w-psnr, WS-psnr, ssim) in Annex, or refer to an external standard specification.
· Consider adding quality metrics for each color component (index metrix by « c », c ranging from 0 to 2 for non-monochrome signal, c=0 for monochrome)
· Consider case of RGB pictures
· Consider defining quality metric not only for single picture, but also for several pictures – see for instance period_type used for decoding complexity metrics metadata

[bookmark: _Toc63261124]Conformance and reference software
Conformance and reference software for green metadata shall be used as specified in Annex C.

[bookmark: _Toc63261125]
(normative)

Supplemental Enhancement Information (SEI) syntax
[bookmark: _Toc63261126]Syntax and semantics of Green Metadata SEI message carried in AVC NAL units
This clause describes the payload syntax and semantics if payloadType 56 appears in an AVC NAL unit with nal_unit_type set to 6.

[bookmark: _Toc63261127]Syntax
	
	Descriptor

	 green_metadata(payload_size)
	

	 green_metadata_type
	u(8)

	 switch (green_metadata_type) {
	

		case 0:
	

			period_type
	u(8)

			if (period_type = = 2) || (period_type = = 7) {
	

				num_seconds
	u(16)

			}
	

			else if (period_type = = 3) || (period_type = = 8) {
	

				num_pictures
	u(16)

			}
	

			if (period_type = = 8) {
	

				temporal_map
	u(tbd)

				for (t=0; t<8; t++) {
	

					if ((temporal_map>>t)%2 = = 1)
	

						num_pictures_in_temporal_layers[t]
	u(16)

				}
	

			}

	

			if (period_type <= 3) {
	

				portion_non_zero_8x8_blocks
	u(8)

				portion_intra_predicted_macroblocks
	u(8)

				portion_six_tap_filterings
	u(8)

				portion_alpha_point_deblocking_instances
	u(8)

			}

	

			else if (period_type = = 4) {

	

				for (i=0; i<= num_slice_groups_minus1; i++) {
	

					num_slices_minus1[i]
	u(16)

				}
	

				for (i=0; i<= num_slice_groups_minus1; i++) {
	

					for (j=0; j<=num_slices_minus1[i]; j++) {
	

						first_mb_in_slice[i][j]
	u(16)

						portion_non_zero_8x8_blocks[i][j]
	u(8)

						portion_intra_predicted_macroblocks[i][j]
	u(8)

						portion_six_tap_filterings[i][j]
	u(8)

						portion_alpha_point_deblocking_instances[i][j]
	u(8)

					}
	

				}
	

			}
	

			else if (period_type >= 5) && (period_type <= 8) {

	

				num_layers_minus1
	u(16)

				for (l=0; l<= num_layers_minus1; l++) {
	

					picture_parameter_set_id[l]
	u(8)

					priority_id[l]
	u(6)

					dependency_id[l]
	u(3)

					quality_id[l]

	u(4)

					temporal_id[l]
	u(3)

					portion_non_zero_8x8_blocks[l]
	u(8)

					portion_intra_predicted_macroblocks[l]
	u(8)

					portion_six_tap_filterings[l]
	u(8)

					portion_alpha_point_deblocking_instances[l]
	u(8)

				}
	

			}
	

			break;
	

		case 1:
	

			xsd_metric_type
	u(8)

			xsd_metric_value
	u(16)

			break;
	

		default:
	

	 }
	

Editorial Notes (to be done)
· need to define coding length of temporal_map

[bookmark: _Toc63261128]Semantics
green_metadata_type – specifies the type of metadata that is present in the SEI message. If green_metadata_type is 0, then complexity metrics are present. Otherwise, if green_metadata_type is 1, then metadata enabling quality recovery after low-power encoding is present. Other values of green_metadata_type are reserved for future use by ISO/IEC.

[bookmark: _Toc63261129]Syntax and semantics of Green Metadata SEI message carried in HEVC NAL units
This clause describes the payload syntax and semantics if payloadType 56 appears in an HEVC NAL unit with nal_unit_type set to PREFIX_SEI_NUT.
[bookmark: _Toc63261130]Syntax
	
	Descriptor

	 green_metadata(payload_size)
	

	 green_metadata_type
	u(8)

	 switch (green_metadata_type) {
	
	

		case 0:

	
	

			period_type
	u(8)

			if (period_type = = 2) {
	

				num_seconds
	u(16)

			}
	

			else if (period_type = = 3) {
	

				num_pictures
	u(16)

			}
	

			if (period_type <= 3) {
	

				portion_non_zero_blocks_area
	u(8)

				if (portion_non_zero_blocks_area != 0) {
	

					portion_8x8_blocks_in_non_zero_area
	u(8)

					portion_16x16_blocks_in_non_zero_area
	u(8)

					portion_32x32_blocks_in_non_zero_area
	u(8)

				}
	

				portion_intra_predicted_blocks_area

	u(8)

				if (portion_intra_predicted_blocks_area = = 255) {

	

					portion_planar_blocks_in_intra_area
	u(8)

					portion_dc_blocks_in_intra_area
	u(8)

					portion_angular_hv_blocks_in_intra_area
	u(8)

				}
	

				else {
	

					portion_blocks_a_c_d_n_filterings
	u(8)

					portion_blocks_h_b_filterings
	u(8)

					portion_blocks_f_i_k_q_filterings
	u(8)

					portion_blocks_j_filterings
	u(8)

					portion_blocks_e_g_p_r_filterings
	u(8)

				}
	

				portion_deblocking_instances
	u(8)

			}

	

			else if(period_type == 4) {
	

				max_num_slices_tiles_minus1
	u(16)

				for (t=0; t<=max_num_slices_tiles_minus1; t++) {
	

					first_ctb_in_slice_or_tile[t]
	u(16)

					portion_non_zero_blocks_area[t]
	u(8)

					if (portion_non_zero_blocks_area[t] != 0) {
	

						portion_8x8_blocks_in_non_zero_area[t]
	u(8)

						portion_16x16_blocks_in_non_zero_area[t]
	u(8)

						portion_32x32_blocks_in_non_zero_area[t]
	u(8)

					}
	

					portion_intra_predicted_blocks_area[t]
	u(8)

					if (portion_intra_predicted_blocks_area[t] = = 255) {

	

						portion_planar_blocks_in_intra_area[t]
	u(8)

						portion_dc_blocks_in_intra_area[t]
	u(8)

						portion_angular_hv_blocks_in_intra_area[t]
	u(8)

					}
	

					else {
	

						portion_blocks_a_c_d_n_filterings[t]
	u(8)

						portion_blocks_h_b_filterings[t]
	u(8)

						portion_blocks_f_i_k_q_filterings[t]
	u(8)

						portion_blocks_j_filterings[t]
	u(8)

						portion_blocks_e_g_p_r_filterings[t]
	u(8)

					}
	

					portion_deblocking_instances[t]
	u(8)

				}
	

			}
	

			break;
	

		case 1:
	

			xsd_metric_type
	u(8)

			xsd_metric_value
	u(16)

			break;
	

		default:
	

	 }
	

[bookmark: _Toc63261131]A.2.2 Semantics
green_metadata_type – specifies the type of metadata that is present in the SEI message. If green_metadata_type is 0, then complexity metrics are present. Otherwise, if green_metadata_type is 1, then metadata enabling quality recovery after low-power encoding is present. Other values of green_metadata_type are reserved for future use by ISO/IEC.
[bookmark: _Toc63261132]Syntax and semantics of Green Metadata SEI message carried in VVC NAL units
This clause describes the payload syntax and semantics if payloadType 56 appears in a VVC NAL unit with nal_unit_type set to PREFIX_SEI_NUT.
[bookmark: _Toc63261133]Syntax
	green_metadata(payload_size)
	Descriptor

	 green_metadata_type
	u(8)

	 switch (green_metadata_type) {
	
	

		case 0:

	
	

			period_type
	u(8)

			if (period_type == 2) {
	

				num_seconds
	u(16)

			}
	

			else if (period_type == 3) {

	
	

				num_pictures
	u(16)

			}
	

			if (period_type <= 3) {
	

				portion_non_zero_blocks_area
	u(8)

				if (portion_non_zero_blocks_area != 0) {
	

					portion_non_zero_4_8_16_blocks_area
	u(8)

					portion_ non_zero_32_64_128_blocks_area
	u(8)

					portion_ non_zero_256_512_1024_blocks_area
	u(8)

					portion_ non_zero_2048_4096_blocks_area
	u(8)

				}
	

				portion_non_zero_transform_coefficients_area

	u(8)

				portion_intra_predicted_blocks_area

	u(8)

				if (portion_intra_predicted_blocks_area = = 255) {

	

					portion_planar_blocks_in_intra_area
	u(8)

					portion_dc_blocks_in_intra_area
	u(8)

					portion_angular_hv_blocks_in_intra_area
	u(8)

					portion_mip_blocks_in_intra_area
	u(8)

				}
	

				else {
	

					portion_bi_and_gpm_predicted_blocks_area
	u(8)

				}
	

				portion_deblocking_instances
	u(8)

				portion_sao_instances
	u(8)

				portion_alf_instances
	u(8)

			}

	

			else if(period_type >= 4 || period_type <= 8) {
	

				max_num_segments_minus1
	u(16)

				for (t=0; t<= max_num_segments_minus1; t++) {
	

					first_ctb_in_segment[t]
	u(16)

					portion_non_zero_blocks_area[t]
	u(8)

				if (portion_non_zero_blocks_area[t] != 0) {
	

					portion_non_zero_4_8_16_blocks_area[t]
	u(8)

					portion_non_zero_32_64_128_block_area[t]
	u(8)

					portion_non_zero_256_512_1024_blocks_area[t]
	u(8)

					portion_non_zero_2048_4096_blocks_area[t]
	u(8)

				}
	

				portion_non_zero_transform_coefficients_area[t]
	u(8)

				portion_intra_predicted_blocks_area[t]
	u(8)

				if (portion_intra_predicted_blocks_area[t] = = 255) {

	

					portion_planar_blocks_in_intra_area[t]
	u(8)

					portion_dc_blocks_in_intra_area[t]
	u(8)

					portion_angular_hv_blocks_in_intra_area[t]
	u(8)

					portion_mip_blocks_in_intra_area[t]
	u(8)

				}
	

				else {
	

					portion_bi_predicted_blocks_area[t]
	u(8)

				}
	

				portion_deblocking_instances[t]
	u(8)

				portion_sao_instances[t]
	u(8)

				portion_alf_instances[t]
	u(8)

			}
	

			break;
	

		case 1:
	

			xsd_metric_number_minus1
	u(4)

			for (i=0; i<= xsd_metric_number_minus1; i++) {
	

				xsd_metric_type[i]
	u(8)

				xsd_metric_value[i]
	u(16)

			}
	

			break;
	

		default:
	

	 }
	

[bookmark: _Toc63261134]Semantics
green_metadata_type – specifies the type of metadata that is present in the SEI message. If green_metadata_type is 0, then complexity metrics are present. Otherwise, if green_metadata_type is 1, then metadata enabling quality recovery after low-power encoding is present. Other values of green_metadata_type are reserved for future use by ISO/IEC.

[bookmark: _Toc63261135]
(normative)

Implementation guidelines for the usage of Green Metadata
[bookmark: _Toc63261136]Codec dynamic voltage frequency scaling for decoder-power reduction
[bookmark: _Toc63261137]General
Codec Dynamic Voltage Frequency Scaling (C-DVFS) uses the DVFS technique to scale the voltage and operating frequency of the CPU to achieve power savings while decoding a bitstream. Typically the dynamic power consumption of a CMOS circuit increases monotonically with the operating frequency. The power-optimization module at the receiver extracts the Complexity Metrics (CMs) metadata that indicates picture-decoding complexity. It uses these CMs to determine and set the optimum operating voltage and frequency of the CPU so that video pictures are correctly decoded with minimal power consumption. By embedding these CMs as metadata into the bitstream at the encoder, C-DVFS enabled receivers will achieve power reduction.
[bookmark: _Toc63261138]Derivation of the complexity metrics
5.2.2 specifies these four CMs associated to AVC: portion_non_zero_8x8_blocks, portion_intra_predicted_macroblocks, portion_six_tap_filterings and portion_alpha_point_deblocking_instances. The computation of the first two CMs, as explained in 5.2.4, is straightforward. However, computation of portion_six_tap_filterings and portion_alpha_point_deblocking_instances is more involved. To provide a better understanding of these two CMs, the next two subclauses describe how MaxNumSixTapFilteringsPic(i) and MaxNumAlphaPointDeblockingInstancesPic(i) are derived.
5.2.2 specifies these five CMs associated to HEVC: portion_blocks_a_c_d_n_filterings, portion_blocks_h_b_filterings, portion_blocks_f_i_k_q_filterings, portion_blocks_j_filterings and portion_blocks_e_g_p_r_filterings. To provide a better understanding of these five CMs, the different sub-sample position a, b, c, d, e, f, g, h, i, j, k, n, p, q and r, are represented in Figure B.1, where upper-case letters represent integer samples and lower-case letters represent sub-sample positions derived.
5.2.2 specifies CMs associated to VVC: portion_non_zero_blocks_area, portion_intra_predicted_blocks_area, portion_bi_and_gpm_predicted_blocks_area, portion_deblocking_instances, portion_sao_filtered_blocks, portion_alf_filtered_blocks.
[bookmark: _Toc63261139]
[bookmark: _Toc63261140]Deriving the worst-case, largest value for MaxNumSixTapFilteringsPic(i)
To determine MaxNumSixTapFilteringsPic(i), the following terms, as defined in ISO/IEC 1449610, are referenced: motion vector, PicSizeInMbs, reference picture list. At the decoder, the worst-case, largest number of 6-tap filterings (STFs) occurs in a picture when all partitions consist of 4x4 blocks that will be interpolated. The 4x4 blocks produce the largest number of STFs because the overhead from interpolating samples that are outside the block is larger for 4x4 blocks than for 8x8 blocks as explained below.
In Figure B.1, upper-case letters represent integer samples and lower-case letters represent fractional sample positions. Subscripts are used to indicate the integer sample that is associated with a fractional sample position. The subsequent analysis is for the worst-case largest number of STFs for the interpolation of the 4x4-block consisting of samples G, H, I, J, M, N, P, Q, R, S, V, W, T, U, X, Y. This interpolation shall be performed when a motion vector (MV) points to one of the following fractional-sample positions: aG, bG, cG, dG, eG, fG, gG, hG, iG, jG, kG, nG, pG, qG, rG. If the MV points to aG, then the decoder shall compute aG and the 15 points (aH, aI, ...) that have the same respective relative locations to H, I, J, M, N, P, Q, R, S, V, W, T, U, X, Y that aG has to G. Similarly, the decoder shall compute 16 points for each of the other fractional-sample positions (bG, cG, ..., rG) that the MV could point to. To determine the worst-case largest number of STFs for the interpolation of the 4x4 block, here is a count of the STFs required for each fractional-sample position that the MV could point to.
[image: 23001-11_ed1figB1]
Figure B.1 — Quarter-sample interpolation of the 4x4-block consisting of samples G, H, I, J, M, N, P, Q, R, S, V, W, T, U, X, Y
1	If the MV points to bG, then to interpolate bG, the decoder shall apply 1 STF to E, F, G, H, I, J which are already available as integer samples. So 16 STFs are needed to compute bG, ..., bY for the 4x4 block.
2	If the MV points to hG, then to interpolate hG, the decoder shall apply 1 STF to A, C, G, M, R, T which are already available as integer samples. So 16 STFs are needed to compute hG, ..., hY for the 4x4 block.
3	If the MV points to jG, then to interpolate jG, the decoder shall apply 6 STFs to compute aa, bb, bG, sM, gg, hh because these are unavailable. Next, 1 STF is needed to compute jG from aa, bb, bG, sM, gg, hh. So 7 STFs are required for jG.
a	To get jM, the decoder needs bb, bG, sM, gg, hh, ii. Only ii is unavailable. So 2 STFs are needed for jM (one for ii and one for jM).
b	To get jR, the decoder needs 2 STFs (one for jj and one for jR).
c	To get jT, the decoder needs 2 STFs (one for kk and one for jT).
d	Therefore, for jG, jM, jR and jT, the decoder needs 7 + 2 + 2 + 2 = 13 STFs. Since the computation is identical for each of the four columns GMRT, HNSU, IPVX and JQWY, the decoder needs 13 * 4 = 52 STFs to compute jG, ... jY for the 4x4 block.
4	If the MV points to aG, then to interpolate aG, the decoder needs 1 STF to get bG (from (1)) and therefore 16 STFs to compute aG, ..., aY for the 4x4 block.
5	If the MV points to cG, then to interpolate cG, the decoder needs 1 STF to get bG (from (1)) and therefore 16 STFs to compute cG, ..., cY for the 4x4 block.
6	If the MV points to dG, then to interpolate dG, the decoder needs 1 STF to get hG (from (2)) and therefore 16 STFs to compute dG, ..., dY for the 4x4 block.
7	If the MV points to nG, then to interpolate nG, the decoder needs 1 STF to get hG (from (2)) and therefore 16 STFs to compute nG, ..., nY for the 4x4 block.
8	If the MV points to fG, then to interpolate fG, the decoder needs 7 STFs to get jG (from (3)). Note that bG is included in these 7 STFs. Therefore, from (3), 52 STFs are required to compute fG, ... fY for the 4x4 block.
9	If the MV points to iG, then to interpolate iG, the decoder needs 7 STFs to get jG. Note that hG is computed by one of these 7 STFs. Therefore, 52 STFs are required to compute iG, ... iY for the 4x4 block. For this analysis, the row jG, jH, jI, jJ is computed first (to obtain hG) and then this process is repeated for the other 3 rows (MNPQ, RSVW, TUXY) in the 4x4 block. Previously, in (3), Column GMRT was analysed first and the analysis was then repeated for the other 3 columns (HNSU, IPVX, JQWY).
10	If the MV points to kG, then to interpolate kG, the decoder needs 7 STFs to get jG. Note that mG is computed by one of these 7 STFs. Therefore, 52 STFs are required to compute kG, ... kY for the 4x4 block.
11	If the MV points to qG, then to interpolate qG, the decoder needs 7 STFs to get jG. Note that sG is computed by one of these 7 STFs. Therefore, 52 STFs are required to compute qG, ... qY for the 4x4 block.
12	If the MV points to eG, then to interpolate eG, the decoder needs 2 STFs to get bG and hG (from (1), (2)). Therefore 32 STFs are needed to compute eG, ..., eY for the 4x4 block.
13	If the MV points to gG, then to interpolate gG, the decoder needs 2 STFs to get bG and mH. Therefore, 32 STFs are needed to compute gG, ..., gY for the 4x4 block.
14	If the MV points to pG, then to interpolate pG, the decoder needs 2 STFs to get hG and sG. Therefore, 32 STFs are needed to compute pG, ..., pY for the 4x4 block.
15	If the MV points to rG, then to interpolate rG, the decoder needs 2 STFs to get mG and sG. Therefore, 32 STFs are needed to compute rG, ..., rY for the 4x4 block.
From (1),…,(15), the worst-case, largest number of STFs is 52, when the MV points to jG, fG, iG, kG or qG. Since the overhead of filtering samples outside the block is smaller for larger block sizes, the worst case STFs is when all partitions are 4x4 blocks and two MVs are used for each block (one from each reference picture list). In this case, the worst-case, largest number of STFs in a picture is
MaxNumSixTapFilteringsPic(i) = (worst-case number of STFs in a 4x4 block) *
 (worst-case number of reference picture lists) *
 (PicSizeInMbs) *
 (number of 4x4 luma blocks in a macroblock)
 = 52 * 2 * PicSizeInMbs * 16
 = 1664 * PicSizeInMbs	(B-1)
[bookmark: _Toc63261141]Deriving the worst-case, largest value for MaxNumAlphaPointDeblockingInstancesPic(i)
To determine MaxNumAlphaPointDeblockingInstancesPic(i), the following analysis determines the worst-case, largest number of Alpha-Point Deblocking Instances (APDIs) that can occur when deblocking a picture at the decoder. The following terms, as defined in ISO/IEC 1449610, are referenced: raster scan, PicSizeInMbs.
Consider a macroblock containing a 16x16 luma block in which the samples have been numbered in raster-scan order as shown in Figure B.2. Upper-case roman numerals are used to reference columns of samples and lower-case roman numerals are used to reference rows of samples. For example, Column IV refers to the column of Samples 4, 20, ... 244 and Row xiii refers to the row of samples 193, 194, ..., 208. Edges are indicated by an ordered pair that specifies the columns or rows on either side of the edge. For example, Edge (IV, V) refers to the vertical edge between Columns IV and V. Similarly, Edge (xii, xiii) indicates the horizontal edge between Rows xii and xiii. Note that the leftmost vertical edge and the topmost horizontal edge are denoted by (0, I) and (0, i) respectively.
The maximum number of APDIs occurs when the 4x4 transform is used on each block and a single APDI occurs in every set of eight samples across a 4x4 block horizontal or vertical edge denoted as pi and qi with i = 0,...,3 as shown in Figure 8-11 of ISO/IEC 1449610:2017.
For the macroblock in Figure B.2, the Vertical Edges (0, I), (IV, V), (VIII, IX) and (XII, XIII) are filtered first. Then the Horizontal Edges (0,i), (iv, v), (viii, ix) and (xii, xiii) are filtered. Now, when Vertical Edge (0, I) is filtered, in the worst-case, an APDI will occur on each row of the edge because the q0 Samples 1, 17, ... 241 will all be APDIs. Therefore, 16 APDIs will occur in Vertical Edge (0, I). Similarly, when Vertical Edge (IV, V) is filtered, there will also be 16 APDIs corresponding to the 16 (p0, q0) sample pairs (20, 21), (36, 37), ... (244, 245). Thus, there will be 16*4 = 64 APDIs from vertical-edge filtering. After horizontal-edge filtering, there will be an additional 64 APDIs because each horizontal edge will contribute 16 APDIs. For example, Horizontal Edge (viii, ix) will contribute the 16 APDIs corresponding to the (p0, q0) sample pairs (113, 129), (114, 130), ..., (128, 144). Hence, in the worst-case, deblocking the luma block in a macroblock produces 128 APDIs.
Next, consider the two chroma blocks corresponding to the luma block in the macroblock. The worst-case number of APDIs is determined by the chroma sampling relative to the luma sampling.
[image:]
Figure B.2 — 16x16 luma block. Upper-case roman numerals reference columns of samples and lower-case roman numerals reference rows of samples.
1	For each chroma block in 4:2:0 format, two vertical edges and two horizontal edges are filtered. Each edge contributes 8 APDIs, in the worst-case. So, 8*4*2 = 64 APDIs are produced by worst-case deblocking of the two chroma blocks.
2	For 4:2:2 format, two vertical edges and four horizontal edges are filtered. Each vertical edge contributes 16 APDIs and each horizontal edge contributes 8 APDIs. So, 2*(2*16 + 4*8) = 128 APDIs are produced by worst-case deblocking of the two chroma blocks.
3	For 4:4:4 format, the worst-case analysis for each chroma block is identical to that of the 16x16 luma block. Therefore, 256 APDIs are produced by worst-case deblocking of the two chroma blocks.
4	Finally, for separate colour planes, the worst-case analysis of a 16x16 block is identical to that a 16x16 luma block.
To conclude, since each picture has PicSizeInMbs macroblocks, the worst-case number of APDIs per picture, is as follows:
MaxNumAlphaPointDeblockingInstancesPic(i)
 = PicSizeInMbs * (128 + 64) = 192 * PicSizeInMbs, for 4:2:0,
 = PicSizeInMbs * (128 + 128) = 256 * PicSizeInMbs, for 4:2:2,
 = PicSizeInMbs * (128 + 256) = 384 * PicSizeInMbs, for 4:4:4,
 = 128 * PicSizeInMbs, for a single colour plane.	(B-2)
[bookmark: _Toc63261142]Example usage of C-DVFS metadata
C-DVFS metadata may be signalled at a slice, layer, picture, group of pictures, or scene level and can therefore be adapted to application requirements. Signalling may be done with SEI messages. With SEI-message signalling, each time the SEI message is encountered by the decoder, a new upcoming period begins. The value period_type indicates whether the new upcoming period is a single picture, a single group of pictures, or a time interval (specified in seconds or number of pictures). Figure 1 shows an example process for metadata extraction, complexity prediction, DVFS control-parameter determination and decoding under DVFS control. As an example, assume that the upcoming period is a single picture. Then, the SEI message is parsed to obtain portion_non_zero_8x8_blocks, portion_intra_predicted_macroblocks, portion_six_tap_filterings and portion_num_alpha_point_deblocking_instances. From these portion values and the corresponding worst-case instances the four CMs are derived: num_non_zero_8x8_blocks (nnz), num_intra_predicted_macroblocks (nintra), num_six_tap_filterings (nsix), and num_alpha_point_deblocking_instances (nα). Once the complexity parameters are derived, the total picture complexity (Cpicture) is estimated or predicted according to Formula B-3:

	(B-3)
where Cpicture is the total picture complexity. The total number of macroblocks per picture (nMB) and the number of bits per picture (nbit) can be easily obtained after de-packetizing the encapsulated packets and parsing the sequence parameter set. Constants kinit, kbit, knz, kintra, ksix, and kα are unit-complexity constants for performing macroblock initialization (including parsed data filling and prefetching), single-bit parsing, non-zero block transform and quantization, intra-block prediction, inter-block six-tap filtering, and deblocking alpha-points filtering, respectively. Note that knz, kintra, and ksix are fixed constants for a typical platform, while kinit, kbit, and kα can be accurately estimated using a linear predictor from a previous decoded picture.
Once the picture complexity is determined, the decoder applies DVFS to determine a suitable clock frequency and supply voltage for the decoder. Then, the decoder can decode the video picture at the appropriate clock frequency and supply voltage.
The DVFS-enabling SEI message can be inserted into the bitstream on a slice-by-slice, layer-by-layer, picture-by-picture, scene-by-scene, or even time-interval-by-time-interval basis, depending on the underlying application. Therefore, the SEI message can be inserted once at the start of each picture, scene, or time interval. A scene-interval or time-interval inserted message requires less overhead than a picture-level inserted message. For processors that don’t support high-frequency DVFS (e.g. adapting at 33 ms for 30Hz video playback), setting period_type to an interval is preferable to setting period_type to a picture. Once all complexity metrics are obtained from the SEI message, the decoder estimates the complexity for the next slice, layer, picture, group of pictures, or time interval as indicated by period_type. This complexity is then used to adjust the voltage and frequency for the upcoming period.
In a hardware (ASIC) implementation, instead of deriving decoding complexity and using it directly to control a single clock frequency in a DVFS scheme, the ASIC can be designed so that it includes several distinct clock domains, each of which corresponds to one of the terms in Formula B-3. Greater power reduction can be obtained by using such a flexible ASIC with distinct clock domains. For example, six clock domains in the ASIC can control the following six sections of the ASIC: macroblock initialization, bit parsing, transform and quantization, intra-block prediction, interpolation, and deblocking. To achieve fine-grained DVFS adjustments, the clock frequencies in each domain may be varied in proportion to the corresponding term in Formula B-3. Accordingly, the preceding clock domains can have instantaneous clock frequencies that are respectively proportional to the following terms: kinit * nMB, kbit * nbit, knz * nnz, kintra * nintra, ksix * nsix, and kα * nα.
[image:]
Figure B.3 — Example of parsing, complexity prediction, and DVFS control

[bookmark: _Toc63261143]Display adaptation
[bookmark: _Toc63261144]General
Display Adaptation (DA) achieves power savings by scaling up the RGB components in the reconstructed frames while reducing the backlight or voltage proportionally. The decreased backlight or voltage reduces display power consumption while still producing the same perceived display. The metadata in 6.2.1 can be stored using the file format specified in ISO/IEC 2300110 or the metadata can be carried by MPEG-2 systems as specified in ISO/IEC 13818-1:2013/Amd. 3:2014.
[bookmark: _Toc63261145]Example usage of display-adaptation metadata
The metadata scaled_psnr_rgb[i] indicates the PSNR for the ith quality level. At the transmitter, reconstructed frames are available within the encoder and ScaledFrames[i] is estimated by saturating all RGB components of reconstructed frames to max_rgb_component[i]. The ScaledFrames[i] thus obtained are what would be perceived at the display after the receiver scales the RGB components of reconstructed frames by (PeakSignal / max_rgb_component[i]), PeakSignal variable being the peak signal as defined in Terms and Definitions of this document and then applies the backlight scaling factor, b = (max_rgb_component[i] / PeakSignal) to the LCD backlight. scaled_psnr_rgb[i] is computed at the transmitter using PeakSignal and by assuming that the noise is the difference between ScaledFrames[i] and reconstructed frames accumulated over R, G and B components, as explained in 6.4.
The receiver examines the (num_quality_levels + 1) pairs of metadata and selects the pair (max_rgb_component[iSelected], scaled_psnr_rgb[iSelected]) for which scaled_psnr_rgb[iSelected] is an acceptable quality level. Then, the receiver derives DA scaling factors from max_rgb_component[iSelected]. Finally, the display scales the RGB components of reconstructed frames by PeakSignal / max_rgb_component[iSelected] and it scales the backlight or voltage level by max_rgb_component[iSelected] / PeakSignal. After backlight scaling, the displayed pixels are perceived as ScaledFrames[iSelected]. The metadata clearly enables a trade-off between quality (PSNR) and power reduction (backlight scaling factor).
The following power-saving protocol can be implemented in a mobile device. The user specifies a list of N acceptable PSNR quality levels Q[1], …, Q[n], where Q[1] > Q[2] > …> Q[n] and a list of Remaining Battery Life Levels (RBLLs) RBLL[1], …, RBLL[n] so that RBLL[1] > RBLL[2] > … > RBLL[n]. For example, consider N = 3 and Q[1] = 40, Q[2] = 35, Q[3] = 25 with RBLL[1] = 70%, RBLL[2] = 40% and RBLL[3] = 0%. When the user watches a video, the device monitors the actual RBLL, denoted RBLLactual, of the device and selects RBLL[iSelected] so that RBLL[iSelected-1] > RBLLactual > RBLL[iSelected], where RBLL[0] = 100%. For each frame to be displayed, the device examines the display-adaptation metadata and selects the pair indexed by jSelected for which Q[iSelected-1] > scaled_psnr_rgb[jSelected] > Q[iSelected], where Q[0] = infinity. The metadata max_rgb_component[jSelected] is then used to determine display-adaptation scaling parameters. Thus, the device will implement a protocol that strikes a balance between perceived quality and power-saving. The balance is tilted toward quality when the RBLL is high but shifts toward power saving as the battery is depleted.
[bookmark: _Toc63261146]Example usage of display-adaptation metadata for contrast enhancement
At low quality levels, contrast enhancement significantly improves perceived visual quality, especially for bright content. To enhance contrast at the lowest quality level associated with the backlight scaling factor b = (max_rgb_component[num_quality_levels] / PeakSignal) the receiver first examines lower_bound. If it is greater than zero, then contrast enhancement metadata is available and the receiver stores upper_bound. The presentation subsystem performs contrast enhancement by setting the backlight scaling factor to b = (max_rgb_component[num_quality_levels] / PeakSignal), and for each RGB component, x, of reconstructed frames, the following scaling to S(x) is performed:
S(x) = 0, for x in [0, lower_bound],
 = PeakSignal * (x-lower_bound) / (upper_bound – lower_bound),
 for x in (lower_bound, upper_bound),
 = PeakSignal, for x in [upper_bound, PeakSignal]
Observe that the interval (lower_bound, upper_bound) is mapped to the interval (0, PeakSignal). Then, after applying the backlight scaling factor, b, to the display, the interval (lower_bound, upper_bound) is perceived visually as the interval (0, b * PeakSignal). Therefore, for RGB components within the interval (lower_bound, upper_bound), the perceived contrast enhancement is proportional to b * PeakSignal / (upper_bound – lower_bound). This expression simplifies to b / (upper_bound – lower_bound), because PeakSignal is a constant. For RGB components within the intervals [0, lower_bound] and [upper_bound, PeakSignal], all contrast is lost because these intervals are mapped to 0 and PeakSignal, respectively.
From the preceding observation, it is clear that the contrast is maximized by determining lower_bound and upper_bound so that the majority of RGB components lie within the interval (lower_bound, upper_bound). Therefore, the optimal contrast-enhancement metadata is computed by the following process, at the transmitter. First, determine the BacklightScalingFactor corresponding to the lowest quality level as b = max_rgb_component[num_quality_levels] / PeakSignal. Then, invoke the following pseudocode function get_contrast_metadata() to determine lower_bound and upper_bound.
	// Given RGB components, x, of reconstructed frames with
// cumulative distribution function, C(x), the function get_contrast_metadata() returns
// lower_bound and upper_bound.
[lower_bound, upper_bound] = get_contrast_metadata(C(x)) {
// C(x): Cumulative distribution function of RGB components of reconstructed frames.
max_enhancement = 0;
for (lower_bound = 0; lower_bound < PeakSignal; lower_bound++){
 for (upper_bound = lower_bound; upper_bound < PeakSignal; upper_bound++){
 enhancement = (C(upper_bound) – C(lower_bound)) / (upper_bound – lower_bound)
 if (enhancement > max_enhancement) {
 max_enhancement = enhancement;
 best_lower_bound = lower_bound;
 best_upper_bound = upper_bound;
 }
 }
 }
return (best_lower_bound, best_upper_bound);
}

Although the metadata computed by get_contrast_metadata() is optimal for each frame, flicker artefacts may occur when the video is viewed due to large differences between lower_bound (or upper_bound) settings on successive video frames. To avoid such flicker, the lower_bound and upper_bound metadata should be smoothed temporally using the pseudo-code function smooth_contrast_metadata() shown below.
	// Given a video sequence with frameNum in [1,…,N], first smooth the lower bounds by
// applying the function recursively to all frames by issuing
// smooth_contrast_metadata(LowerBounds,1),
// …
// smooth_contrast_metadata(LowerBounds,N)
// Then smooth the upper bounds by issuing
// smooth_contrast_metadata(UpperBounds,1),
// …
// smooth_contrast_metadata(UpperBounds,N)
// where
// LowerBounds: vector of lower_bound metadata for the N frames
// UpperBounds: vector of upper_bound metadata for the N frames
void smooth_contrast_metadata(Vector, frameNum) {
// Vector: vector of metadata to be smoothed
// frameNum: current frame number
cur = Vector[frameNum]
prev = Vector[frameNum – 1]
if Abs((cur – prev) / prev) > Threshold { // Check whether the metadata variation between
 // successive frames exceeds the threshold.
 if (cur < prev) { // if the current frame’s metadata are lower than the previous frame’s metadata,
 // then increase the current frame’s metadata so that it reaches the acceptable
 // threshold.
 Vector[frameNum] = prev * (1 – Threshold)
} else { // increase the previous frame’s metadata so that it reaches the acceptable
 // threshold. Then adjust the metadata for all preceding frames.
 Vector[frameNum – 1] = cur / (1 + Threshold)
 smooth_contrast_metadata(Vector, frameNum – 1)
 }
}

The value of Threshold is display independent and can be set to 0,015, which corresponds to a 1,5% metadata variation between successive frames.
[bookmark: _Toc63261147]Preventing flicker arising from control latency
If DA metadata were unavailable, then to implement DA, the display would have to estimate max_rgb_component[i] and immediately adjust the backlight (or voltage). This is impossible in most practical implementations because there is a significant latency of D milliseconds between the instant when the backlight scaling control is applied and the instant when the backlight actually changes, in response to the control. If D is sufficiently large, then the backlight values will not be synchronized with the displayed frames and flickering is visible. Fortunately, DA metadata eliminates this flickering. Because the receiver obtains the metadata in advance, the backlight scaling factor can be applied D milliseconds ahead of the video frame with which that scaling factor is associated. Therefore, by transmitting metadata, the latency issue is solved and the backlight scaling factor will be set appropriately for each frame. This avoids flicker from backlight changes during video display.
[bookmark: _Toc63261148]Metadata for DA on displays with control-frequency limitations
Besides eliminating flicker arising from backlight-control latency, DA metadata can also enable DA to be applied to displays in which the backlight (or voltage) cannot be changed frequently. For such displays, once the backlight has been updated it shall retain its value for a time interval that spans the duration of some number of successive frames. After the time interval has elapsed, the backlight may be updated again. DA metadata allows the backlight to be set appropriately for the specified time interval so that maximal power reduction and minimal RGB-component saturation occurs. This appropriate backlight value is determined by aggregating the RGB component histograms in all successive frames in each time interval over which the backlight shall remain constant. The aggregated histograms are then used to derive DA metadata, as explained in preceding subclauses. To enable this mode of operation, the receiver shall signal to the transmitter, constant_backlight_voltage_time_interval, the time interval over which the backlight (or voltage) shall remain constant. Alternatively, the transmitter may assume a reasonable value for constant backlight voltage time interval.
On currently available displays, setting constant_backlight_voltage_time_interval to 100 milliseconds is sufficient to prevent flicker. Therefore, setting num_constant_backlight_voltage_time_intervals = 1 and constant_backlight_voltage_time_interval[0] = 100 is sufficient to prevent flicker arising from control-frequency limitations. However, in the future, a new display technology with constant_backlight_voltage_time_interval significantly different from 100 milliseconds may be invented. During the transition period from the current display technology to the new display technology, two types of displays will be widely used and it will be necessary to set num_constant_backlight_voltage_time_intervals = 2, to support both display types. The preceding mode of operation assumes that a signalling mechanism from the receiver to the transmitter does not exist.
However, if such a signalling mechanism does exist, then the receiver can explicitly signal constant_backlight_voltage_time_interval to the transmitter as explained in 6.2.2 and 6.3.2. If the transmitter is additionally capable of re-computing the display adaptation metadata to be consistent with the signalled constant_backlight_voltage_time_interval, then the re-computed metadata can subsequently be provided to the receiver.
[bookmark: _Toc63261149]DA metadata to prevent flicker from large variations
On some platforms, besides the flicker that arises from control latency and control-frequency limitations, flicker can also occur due to a large difference between the backlight (or voltage) settings (defined as BacklightScalingFactor in 6.4) of successive video frames. To avoid such flicker, a transmitter can use the function in the table below to adjust the backlight setting of each frame. Specifically, if the relative backlight variation between a frame and its predecessor is larger than a threshold, then the backlight values of all preceding frames shall be adjusted. This adjustment is done at the transmitter after metadata has been computed using one of the methods described in the preceding subclauses.
For example, for a targeted quality level, the transmitter would estimate max_rgb_component and the corresponding BacklightScalingFactor for each of N frames. Given max_variation (normalized to 255), the transmitter applies adjust_backlight() with the specified max_variation threshold computed as the floating-point number (max_variation/2048). This function adjusts the vector of BacklightScalingFactor values for the N frames so that the relative backlight variation between successive frames is less than max_variation. After the backlight values have been adjusted, the DA metadata is modified, if necessary, to be consistent with the adjusted backlight values.
	// Given a video sequence with frameNum in [1,…,N], apply the function
// recursively to all frames by issuing
// adjust_backlight(Backlights,1,max_variation),
// …
// adjust_backlight(Backlights,N,max_variation)
void adjust_backlight(Backlights, frameNum, max_variation) {
// Backlights: vector of BacklightScalingFactor values
// frameNum: current frame number
// max_variation: maximum permissible backlight variation between two
// consecutive backlight values
cur = Backlights[frameNum]
prev = Backlights[frameNum – 1]
if Abs((cur – prev) / prev) > max_variation { // Check whether the backlight variation between
 // successive frames exceeds the threshold.
if (cur < prev) { // if the current frame’s backlight is lower than the previous frame’s backlight,
 // then increase the current frame’s backlight so that it reaches the acceptable threshold.
 Backlights[frameNum] = prev * (1 – max_variation)
}else { // increase the previous frame’s backlight so that it reaches the acceptable
 // threshold.Then adjust the backlights for all preceding frames.
 Backlights[frameNum – 1] = cur / (1 + max_variation)
 adjust_backlight(Backlights, frameNum – 1, max_variation)
}
}

For a given display, large values of max_variation will induce more flicker but also save more power. Therefore, the selected value of max_variation is a compromise between flicker reduction and power saving. The max_variation metadata guarantees that the receiver will not experience flicker because the backlights are adjusted specifically for the receiver’s display.
On currently available displays, setting max_variation = 0,015*2 048 is sufficient to prevent flicker. Therefore, setting num_max_variations = 1 and max_variation = 0,015*2 048 is sufficient to prevent flicker arising from control-frequency limitations. However, in the future, a new display technology with max_variation significantly different from 0,015*2 048 may be invented. During the transition period from the current display technology to the new display technology, two types of displays will be widely used and it will be necessary to set num_max_variations = 2, to support both display types. The preceding mode of operation assumes that a signalling mechanism from the receiver to the transmitter does not exist.
However, if such a signalling mechanism does exist, then the receiver can explicitly signal max_variation to the transmitter as explained in 6.3.2. If the transmitter is additionally capable of re-computing the display adaptation metadata to be consistent with the signalled max_variation, then the re-computed metadata can subsequently be provided to the receiver.

[bookmark: _Toc63261150]Energy-efficient media selection in adaptive streaming
[bookmark: _Toc63261151]General
This clause explains how the Green Metadata for adaptive streaming can be computed at the server and how such metadata can be used at the client.
[bookmark: _Toc63261152]Green Metadata production and transmission at the server side
Given N video Representations, the decoder-power indication metadata dec_ops_reduction_ratio_from_max(i) (DOR-Ratio-Max(i)) and dec_ops_reduction_ratio_from_prev(i) (DOR-Ratio-Prev(i)) are computed by the encoding system and provided by the server for i = 0 to N-1, as shown in Figure B.4. The display-power indication metadata is computed from one Representation.
[image:]
Figure B.4 — Green Metadata computation and insertion
The DOR-Ratio-Max(i) associated with each video Representation i of a Segment is computed as the power-saving ratio from the most demanding video Representation produced for the Segment, as defined in 7.4.1.
The DOR-Ratio-Prev(i) associated with each video Representation i of a Segment is computed as the power-saving ratio from the previous Segment of the same Representation, as defined in 7.4.1.
To produce the normative Green Metadata DOR-Ratio-Max(i) and DOR-Ratio-Prev(i) for a given Segment, the encoding system needs to estimate the decoding complexity of each video Representation, as a number of processing cycles.
Each sample which contains the DOR-Ratio values is then stored in a specific metadata file “id/$Time$.mp4m” (one for each Segment) using the format specified in ISO/IEC 2300110. In the DASH context, the metadata files created for one or multiple video Representations will be considered as metadata Representations. The available metadata Representations will be signalled in a specific Adaptation Set within the MPD. The association of a metadata Representation with a media Representation is signalled in the MPD through the @associationId and @associationType attributes. A metadata Segment and its associated media Segment(s) are time aligned on Segment boundaries.
The decoder-power indication metadata Representation is associated with a single media Representation as shown in Figure B.5.
[image:]
Figure B.5 — One metadata Representation for one media Representation
The following XML file provides an example of an MPD for decoder-power indication metadata:
	<?xml version=”1.0” encoding=”UTF-8”?>
<MPD
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:DASH:schema:MPD:XXXX"
 xsi:schemaLocation="urn:mpeg:DASH:schema:MPD:xxxx"
 type="dynamic"
 minimumUpdatePeriod="PT2S"
 timeShiftBufferDepth="PT30M"
 availabilityStartTime="2011-12-25T12:30:00"
 minBufferTime="PT4S"
 profiles="urn:mpeg:dash:profile:isoff-live:2011">

 <BaseURL>http://cdn1.example.com/</BaseURL>
 <BaseURL>http://cdn2.example.com/</BaseURL>

 <Period>
 <!-- Video -->
 <AdaptationSet
 id="video"
 mimeType="video/mp4"
 codecs="avc1.4D401F"
 frameRate="30000/1001"
 segmentAlignment="true"
 startWithSAP="1">
 <BaseURL>video/</BaseURL>
 <SegmentTemplate timescale="90000" media="$Bandwidth$/$Time$.mp4v">
 <SegmentTimeline>
 <S t="0" d="180180" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 <!-- English Audio -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.0x40" lang="en" segmentAlignment="0">
 <SegmentTemplate timescale="48000" media="audio/en/$Time$.mp4a">
 <SegmentTimeline>
 <S t="0" d="96000" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="a0" bandwidth="64000" />
 </AdaptationSet>

	 <!-- French Audio -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.0x40" lang="fr" segmentAlignment="0">
 <SegmentTemplate timescale="48000" media="audio/fr/$Time$.mp4a">
 <SegmentTimeline>
 <S t="0" d="96000" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="a0" bandwidth="64000" />
 </AdaptationSet>
<!--AdaptationSet carrying Green Video Information for Video -->
 <AdaptationSet id="green_video" codecs="depi"/>
 <BaseURL>video_green_depi/</BaseURL>
 <SegmentTemplate timescale="90000" media="id/$Time$.mp4m">
 <SegmentTimeline>
 <S t="0" d="180180" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="gv0" bandwidth="1000" associationId="v0" associationType="cdsc"/>
 <Representation id="gv1" bandwidth="1000" associationId="v1" associationType="cdsc"/>
 <Representation id="gv2" bandwidth="1000" associationId="v2" associationType="cdsc"/>
 </AdaptationSet>
 </Period>

</MPD>

The display-power indication metadata is a list of (ms_num_quality_levels + 1) pairs of the form (ms_max_rgb_component[i], ms_scaled_psnr_rgb[i]) as defined in 7.4.1. This metadata is produced without considering any constraint on max_variation, the maximal backlight variation between two successive frames. It is also assumed that the backlight can be updated on each frame so that constant_backlight_voltage_time_interval is the inter-frame interval. Therefore the display power-indication metadata provides the maximum power saving for a given quality level.
The display-power indication metadata is stored in a specific metadata file “id/$Time$.mp4m” (one for each Segment) using the format specified in ISO/IEC 2300110. The display-power indication metadata Representation is associated with all the available media Representations as shown in Figure B.6.
[image:]
Figure B.6 — One metadata Representation for all media Representations
The following XML file provides an example of an MPD for display-power indication metadata:
	<?xml version=”1.0” encoding=”UTF-8”?>
<MPD
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:DASH:schema:MPD:XXXX"
 xsi:schemaLocation="urn:mpeg:DASH:schema:MPD:xxxx"
 type="dynamic"
 minimumUpdatePeriod="PT2S"
 timeShiftBufferDepth="PT30M"
 availabilityStartTime="2011-12-25T12:30:00"
 minBufferTime="PT4S"
 profiles="urn:mpeg:dash:profile:isoff-live:2011">

 <BaseURL>http://cdn1.example.com/</BaseURL>
 <BaseURL>http://cdn2.example.com/</BaseURL>

 <Period>
 <!-- Video -->
 <AdaptationSet
 id="video"
 mimeType="video/mp4"
 codecs="avc1.4D401F"
 frameRate="30000/1001"
 segmentAlignment="true"
 startWithSAP="1">
 <BaseURL>video/</BaseURL>
 <SegmentTemplate timescale="90000" media="$Bandwidth$/$Time$.mp4v">
 <SegmentTimeline>
 <S t="0" d="180180" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>

	 <!-- English Audio -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.0x40" lang="en" segmentAlignment="0">
 <SegmentTemplate timescale="48000" media="audio/en/$Time$.mp4a">
 <SegmentTimeline>
 <S t="0" d="96000" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="a0" bandwidth="64000" />
 </AdaptationSet>
 <!-- French Audio -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.0x40" lang="fr" segmentAlignment="0">
 <SegmentTemplate timescale="48000" media="audio/fr/$Time$.mp4a">
 <SegmentTimeline>
 <S t="0" d="96000" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="a0" bandwidth="64000" />
 </AdaptationSet>
<!--AdapatationSet carrying Green Video Information for Video -->
 <AdaptationSet id="green_video" codecs="dipi"/>
 <BaseURL>video_green_dipi/</BaseURL>
 <SegmentTemplate timescale="90000" media="id/$Time$.mp4m">
 <SegmentTimeline>
 <S t="0" d="180180" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="gv0" bandwidth="1000" associationId="v0 v1 v2" associationType="cdsc"/>
 </AdaptationSet>
 </Period>

</MPD>

[bookmark: _Toc63261153]Use of Green Metadata at the client
The client (player/decoder) can determine its remaining battery life based on the energy consumption of the current Representation it is using. If it detects that its battery life is insufficient for the total duration of the video content to be consumed (given parameter in the server or requirements of duration expressed by the user), the terminal can compute the power consumption saving ratio from the current Representation.
Using the following information, the terminal can determine (for the next Segment) the best power-saving allocation strategy for the decoder and for the display:
—	the decoder-power saving ratio of all available video Representations in the next Segment from the current (selected) Representation in the previous Segment,
—	the impact of RGB component scaling on video quality for the next Segment,
—	for the last Segments, the decoder and display consumption as a fraction of the total consumption.
From this information, the terminal determines which Representation it needs to download and what is the appropriate scaling of RGB components for this Representation.
Observe that the decoder-power saving ratio of all available video Representations from the current Representation in the previous Segment is not directly given by the power-indication metadata. At the server, what is given is a list of two decoder operations reduction ratios per video Representation:
—	the first one is the ratio of each Representation from the most energy-consuming one at a given period of time (green arrow in Figure B.7),
—	the second one is the ratio of each Representation at a given period of time from the previous period of time (red arrow in Figure B.8).
The terminal can convert this list of ratios into a list of ratios from the current Representation it was using in the previous Segment.
Let us define the following terms:
—	RefRep the index, in the current Segment, of the Representation which was used by the client terminal in the previous Segment,
—	dec_ops_reduction_ratio_from_max(i) the reduction ratio from the most energy consuming Representation, received from the server,
—	DecOpsReductionRatioFromRefRep(i) the reduction ratio from Representation RefRep in the current Segment,
—	DecOpsReductionRatioFromPrevRefRep(i) the reduction ratio from Representation RefRep in the previous Segment,
It is possible to express the DecOpsReductionRatioFromRefRep(i) from the dec_ops_reduction_ratio_from_max(i), using the following formula:

	(B-5)
The DecOpsReductionRatioFromRefRep(i) are represented by blue arrows in Figure B.7. It is then possible to express the DecOpsReductionRatioFromPrevRefRep(i) from the DecOpsReductionRatioFromRefRep(i), using the following formula:

	(B-6)
DecOpsReductionRatioFromPrevRefRep(i) are represented by cyan arrows in Figure B.8.
NOTE 1	Floating-point numbers are used for these computations.
[image:]
Figure B.7 — Derivation of DecOpsReductionRatios within the current Segment
[image:]
Figure B.8 — Derivation of DecOpsReductionRatios within the current Segment from the previous Segment
Using the mapping between Processing frequency of processors or devices and Power Supply Voltage and the mapping between Power Supply Voltage and Power consumption, the terminal can translate this list into a list of decoder-power saving ratios from the Representation which was used in the previous Segment.
In the case where the total duration of the video content to be consumed is not known (case of live content for example), the terminal can display the expected remaining usage duration based on current battery level and the energy consumption of the current Representation it is using. The user can therefore act on its terminal to increase this usage duration, which will be translated into a power saving ratio as in the previous case.
NOTE 1	Complexity metrics, as defined in 5.2 can be sent with each Representation to allow the client to save energy by proactively invoking C-DVFS to make the selection of Representation work at its best for energy saving.
NOTE 2	The dec_ops_reduction_ratio is known to be stable across software-based platforms.

[bookmark: _Toc63261154]Interactive Signalling for Remote Decoder-Power Reduction
[bookmark: _Toc63261155]General
This clause explains how interactive Green Metadata can be computed at the decoder and how it can be used at the encoder.
[bookmark: _Toc63261156]Decoding operations reduction request computation and transmission
A terminal can display the expected remaining usage duration based on current battery level and the energy consumption of the current video it is decoding. The user can then act on its terminal to increase this usage duration, which will be translated into a power-consumption saving ratio.
This power-consumption saving ratio cannot be sent as is to the remote device because the relationship between power consumption and processing cycles of a processor is not linear and is processor/device dependent.
Using the mapping between Power consumption and Power Supply Voltage and the mapping between Power Supply Voltage and Processing frequency of processors or devices, the terminal can translate the power-consumption saving ratio into a dec_ops_reduction_req (DOR-Req) (step 1 in Figure B.9).
The DOR-Req is sent as green feedback by the device in an out-of-band message (step 2 in Figure B.9).
[image:]
Figure B.9 — Production of the DOR-Req Message
[bookmark: _Toc63261157]Use of decoding operations reduction request
The dec_ops_reduction_req (DOR-Req) is extracted in the remote device and presented to the Power Optimization (step 3 in Figure B.10) which translates this request into a configuration of the encoder (step 4 in Figure B.10), so that it can produce a stream which complies to the DOR-Req (step 5 in Figure B.10).
[image:]
Figure B.10 — Usage of the DOR-Req Message
Thus, each encoder can adapt the complexity of the encoded stream as a function of the battery level of the other device communicating with it.
The strategy used by the encoder to reduce complexity is non-normative. A gradual action can be used to find the best compromise: decoding complexity vs. perceived quality. The gradual action is controlled through the monitoring of the DOR-Req and encoded resolution of decoded stream. When the DOR-Req becomes negative, the encoder knows that it can gradually increase the complexity to reverse its previous actions.
If the two devices are equipped with batteries, the best strategy can be defined by considering the power-saving requests of both devices as shown in Figure B.11.
[image:]
Figure B.11 — Using local and remote information in the power-optimizer module
This technology will achieve maximum power saving in association with C-DVFS technology. As shown in Figure B.10, the DOR-Req messages are directed at remote encoders. However, if these remote encoders produce C-DVFS SEI messages in association with the video stream, then the local decoders can use the C-DVFS SEI message for the maximum power saving achieved from the change initiated by the DOR-Req message.

[bookmark: _Toc63261158]Cross-Segment decoding for quality recovery after low-power encoding
[bookmark: _Toc63261159]General
An encoder can achieve power reduction by encoding alternate high-quality and low-quality Segments, in a segmented delivery mechanism such as DASH. The power reduction occurs because low-complexity encoding mechanisms (fewer encoding modes, fewer reference pictures, smaller search ranges, etc.) are used to produce the low-quality Segments. A metric describing the quality of the last picture of each Segment is delivered as metadata to the decoder. This clause describes how Cross-Segment decoding can be used to improve the quality of the low-quality Segments.
A Cross-Segment decoder will utilize quality metrics contained in the high-quality Segments (from high complexity encoding) to enhance decoding of the low-quality Segments (from low complexity encoding), producing a visual experience with significantly higher QoE, but with reduced average encoding complexity (and therefore reduced encoding power consumption).
Note that the decoding complexity for the first picture in the low-quality Segment is increased, while the decoding complexity for the other pictures remains the same as for regular decoders.
[bookmark: _Toc63261160]Green Metadata Usage
At the transmitter, the encoder records the quality metric of the last picture of each Segment using xsd_metric_type and xsd_metric_value. The XSD-enabled decoder, when it receives the metric data, will use the metrics to determine if it will execute an enhancement algorithm. If the metric indicates that the last picture of the previous Segment is of better quality than the first picture of the new Segment, then it will use the last picture of the previous Segment to enhance the first picture of the new Segment as described below.
The XSD algorithm applies to the transition from a Segment with higher video quality to a temporally neighbouring Segment with poorer quality that is encoded independently of the higher quality Segment. The last picture (in display order) in the higher quality Segment is the “good picture” (GP). The first IDR picture of the poor quality Segment is the “start picture” (SP). The output from the current algorithm is the “fresh start” (FS). Note that the SP as an IDR picture was encoded without referencing the GP or any other pictures in the higher quality Segment. The goal of the enhancement algorithm is to use information contained in the GP to improve the quality of the decoded SP to get an improved reference picture, FS, for subsequent pictures in the low quality Segment.
Depending on the level of motion for different spatial regions of the SP, two enhancement methods are used by the decoder, one for relatively low-motion areas, the other for the higher-motion areas. For both algorithms, the decoder will look for matches between areas in the decoded GP and the SP, as determined by a distortion metric and a threshold calculated by the decoder.
NOTE 1	MSD = Mean Square Difference in the following algorithm description.
	// Estimate MVs. Different algorithms can be used. Square Diamond Search is described below.

for each block B in SP
 set the centre to B.
 calculate the SAD between B and the co-located block B' in GP.
 repeat
 calculate the SAD between B and the block in the up left, up right,
 down left, down right of B' in GP.
 select the block leading to the minimum SAD as the next centre.
 set B' as last centre
 until the centre = last centre;
 repeat
 calculate the SAD between B and the block in the left, right, up, down of B' in GP.
 select the block leading to the minimum SAD as the next centre.
 set B' as last centre
 until the centre = last centre
 Set C' to the centre in GP.
 Set MV(B) to the motion vector from C' to B
// Enhance the new SP
calculate the average Sum of Absolute Difference (AvgSAD) of the MVs.
calculate TMSD = 0.775 * e0.4306 * AvgSAD + 132.4.
for each 16 x16 patch P in SP
 // QP is average quantization parameter in frame.
 // width is the width of the frame.
 // len(MV(P)) is the number of bits to code MV(P).
 if (len(MV(P)) < width * QP /30000) // Use low-motion enhancement method
 calculate the MSD between P and the co-located patch P' in GP
 if (MSD < = TMSD)
 copy P' to P;
 else // P is high motion – use high-motion enhancement method
 for each 4x4 block B in P
 good_mv = 0;
 for each of 8 mv near MV(B)
 if mv = MV(B)
 good_mv++;
 if (good_mv > = 5)
 calculate the MSD between B and co-located B' in GP referenced by MV(B)
 if (MSD < = TMSD)
 copy B' to B;

[bookmark: _Toc348013651][bookmark: _Toc348147921][bookmark: _Toc348148506][bookmark: _Toc340433050][bookmark: _Toc340434018][bookmark: _Toc340494876][bookmark: _Toc340495851][bookmark: _Toc340578976][bookmark: _Toc340595913][bookmark: _Toc340672367][bookmark: _Toc340673345][bookmark: _Toc340693241][bookmark: _Toc340694219]After the FS-Picture Generation algorithm is applied, decoding of subsequent pictures is done as usual.

Annex C
(normative)
Conformance and reference software
A
B
C
C.1 [bookmark: _Toc63261161]Complexity metrics for decoder-power reduction
C.1.1 [bookmark: _Toc63261162] Conformance test vectors
The following two 4:2:0 8 bit per sample AVC conformance bitstreams with embedded Green Metadata SEI message are available at http://standards.iso.org/iso-iec/23001/-11/ed-2/en.
	Name
	Resolution /Frame rate (fps)
	RAP period
(number of frames)
	Bitrate
(Mbps)
	Green Metadata SEI period
(number of frames)
	Profile
	Expected value

	mobcal_480p50_AVC_HP.bin
	704x480p@50
	15
	2.798
	1
	High
	mobcal_480p50_AVC_HP.txt

	stockholm_720p5994_AVC_HP.bin
	1280x720p@59.94
	15
	7.205
	1
	High
	stockholm_720p5994_AVC_HP.txt

To verify conformance of a software implementation of Green Metadata SEI message parsing, the conformance streams shall be used to check that extracted values match expected values given in the side text files provided with the conformance streams.
C.1.2 [bookmark: _Toc63261163]Reference software
Reference decoder software provided in ISO/IEC 14496-5 or Rec. ITU-T H.264.2 integrates a Green Metadata SEI message parser, which extracts and displays SEI messages from conformance and test bitstreams.
To enable the Green Metadata SEI message parser, the source code shall be compiled with the macro #define PRINT_GREEN_METADATA_INFO.
To verify conformance of a test Green Metadata SEI message generated from a video in a test bitstream,the reference software shall be used to extract the test SEI message from the test bitstream and then to check the message for syntactic correctness and valid ranges.
C.2 [bookmark: _Toc63261164] Display-power reduction using display adaptation
C.2.1 [bookmark: _Toc63261165] Conformance test vectors
One conformance ISO BMFF file, BasketballDrill_28_gamma.mp4m, which contains Green Metadata samples of ‘dfce’ Sample Entry Type, as specified in ISO/IEC 23001-10, is available at http://standards.iso.org/iso-iec/23001/-11/ed-2/en..
It is composed of a sample entry which contains static Metadata and samples which contain dynamic Metadata.
To verify conformance of a software implementation of ‘dfce’ Green Metadata samples parsing in an ISO BMFF file, the conformance file shall be used to check that extracted values match expected values given in the side text file provided with the conformance file.
C.2.2 [bookmark: _Toc63261166] Reference software
A reference software for parsing and display of ‘dfce’ Green Metadata samples in ISO BMFF file is available at http://standards.iso.org/iso-iec/23001/-11/ed-2/en.
It is linked with ISO BMFF reference software libraries (IsoLib), which are available in ISO/IEC 14496-5.
A readme.txt is provided to explain how to produce the executable in a Windows or Linux environment.
The reference software takes the ISO BMFF metadata file (*.mp4m) as input and produces a text file as output, which gives a full description of the metadata stored in the samples of the input file.
To verify conformance of test metadata files, the reference software shall be used to parse the test metadata files and to check them for syntactic correctness and valid ranges.
C.3 [bookmark: _Toc63261167] Energy-efficient media selection
C.3.1 [bookmark: _Toc63261168] Conformance test vectors
A conformance test vector for decoder-power indication metadata is available at http://standards.iso.org/iso-iec/23001/-11/ed-2/en.
It consists of a set of:
· ten ISO BMFF video files, which provide ten AVC video representations, with (sub)segments duration of 2 s, at the following resolutions and bitrates:
· 1920x1080p50 @ 10Mbps,
· 1920x1080p50 @ 8Mbps,
· 1600x900p50 @ 8Mbps,
· 1600x900p50 @ 6Mbps,
· 1280x720p50 @ 6Mbps,
· 1280x720p50 @ 5Mbps,
· 960x540p50 @ 5Mbps,
· 960x540p50 @ 3.5Mbps,
· 768x432p50 @ 3.5Mbps,
· 768x432p25 @ 2.5Mbps.
· ten ISO BMFF metadata files, which provide associated decoder-power indication (‘depi’) metadata representation of each video representation,
· a manifest file, conformant to ISO/IEC 23009-1.
The ISO BMFF metadata files contain Green Metadata samples of ‘depi’ Sample Entry Type, as specified in ISO/IEC 23001-10.
To verify conformance of a software implementation of ‘depi’ Green Metadata samples parsing in an ISO BMFF file,the conformance metadata files shall be used to check that extracted values match expected values given in the side text files provided with the conformance files.
C.3.2 [bookmark: _Toc63261169]Reference software
A reference software for parsing and display of decoder-power (‘depi’) or display-power (‘dipi’) indication metadata in ISO BMFF file is available at http://standards.iso.org/iso-iec/23001/-11/ed-2/en.
It is linked with ISO BMFF reference software libraries (IsoLib), which are available in ISO/IEC 14496-5.
A readme.txt is provided to explain how to produce the executable in Windows or Linux environment.
The reference software takes the ISO BMFF metadata file (*.mp4m) as input and produces a text file as output, which gives a full description of the metadata stored in the samples of the input file.
To verify conformance of test metadata files, the reference software shall be used to parse the test metadata files and to check them for syntactic correctness and valid ranges.
C.4 [bookmark: _Toc63261170]Metrics for quality recovery after low-power encoding
C.4.1 [bookmark: _Toc63261171]Conformance test vectors
The following 4:2:0 8 bits AVC conformance bitstream with embedded Green Metadata SEI message is available at http://standards.iso.org/iso-iec/23001/-11/ed-2/en.
	Name
	Resolution /
Frame rate (fps)
	Bitrate (Mbps)
	Profile
	Expected value

	crowdrun_1080p50_AVC_HP.bin
	1920x1080p@50
	10
	High
	28.70

The bitstream embeds for the last frame a SEI message that contains PSNR value of this frame, as described in this document.
To verify conformance of a software implementation of Green Metadata SEI message parsing, the conformance stream shall be used to check that the extracted PSNR value matches the expected value given in the side text file provided with the conformance stream.
The following 4:2:0 8 bit per sample HEVC conformance bitstream with embedded Green Metadata SEI message is available in the electronic attachments of this document:
	Name
	Resolution /
Frame rate (fps)
	Bitrate (Mbps)
	Profile
	Expected value

	kimono_1080p24_HEVC_MP.bin
	1920x1080p@24
	1
	Main
	37.99

The bitstream embeds for the last frame a SEI message that contains the PSNR value of this frame as described in this document.
To verify conformance of a software implementation of Green Metadata SEI message parsing, the conformance stream shall be parsed to check that the PSNR extracted value matches the expected value given in the side text file provided with the conformance stream.
C.4.2 [bookmark: _Toc63261172]Reference software
Reference decoder software provided in ISO/IEC 14496-5 or Rec. ITU-T H.264.2 integrates a Green Metadata SEI message parser, which extracts and displays SEI messages from conformance and test bitstreams.
To enable the Green Metadata SEI message parser, the source code shall be compiled with the macro #define PRINT_GREEN_METADATA_INFO.
Reference decoder software provided in ISO/IEC 23008-5 integrates a Green Metadata SEI message parser, which extracts and displays SEI messages from conformance and test bitstreams.
To verify conformance of a test Green Metadata SEI message generated from a video in a test bitstream, the reference software shall be used to extract the test SEI message from the test bitstream and then to check the message for syntactic correctness and valid ranges.

image1.wmf
x

y

oleObject1.bin

image2.wmf
()

y

fi

ix

=

å

oleObject2.bin

image3.wmf
()

fi

oleObject3.bin

image4.wmf
,0

Abs()

,0

xx

x

xx

-<

ì

=

í

³

î

oleObject4.bin

image5.wmf
,256

Clip()

255,otherwise

xx

x

<

ì

=

í

î

oleObject5.bin

image6.wmf
1,0

Sign()

1,0

x

x

x

-<

ì

=

í

£

î

oleObject6.bin

image7.png

image8.emf
TotalNumMacroblocksPic (𝑛)

NumPicsInPeriod

𝑛=1

Microsoft_Word_Document.docx

image9.emf
portion_alpha_point_deblocking_instances

=Floor൬

NumAlphaPointDeblockingI nstances

MaxNumAlphaPointDeblockingInstancesInP eriod

∗255൰

Microsoft_Word_Document1.docx

image10.wmf
xsd_metric_value

PSNR

100

=

oleObject7.bin

image11.wmf

image12.png

image13.wmf
pictureinitMBbitbitnznzintraintrasixsix

CKnknknknknkn

aa

=*+*+*+*+*+*

oleObject8.bin

image14.png

image15.png

image16.png

image17.png

image18.wmf
100dec_ops_reduction_ratio_from_max(i)

dec_ops_reduction_ratio_from_RefRep(i)11

00

100dec_ops_reduction_ratio_from_max(RefR

ep)

éù

æö

-

=-*

êú

ç÷

-

êú

èø

ëû

oleObject9.bin

image19.wmf

oleObject10.bin

image20.wmf
dec_ops_reduction_from_prevRefRep(i)

(100dec_ops_reduction_ratio_from_prev(Re

fRep))(100dec_ops_reduction_ratio_from_R

efRep())

100

100

i

=

éù

-*-

æö

-

êú

ç÷

èø

ëû

oleObject11.bin

image21.png

image22.png

image23.png

image24.png

image25.png

