[image:] ISO/IEC JTC 1/SC 29/WG 7 N225

ISO/IEC JTC 1/SC 29/WG 7
MPEG 3D Graphics Coding
Convenorship: AFNOR (France)

Document type:	Output Document

Title:	Insert Document

Status:	Approved

Date of document:	2021-10-30

Source:	ISO/IEC JTC 1/SC 29/WG 7

Expected action:	None

Action due date:	None

No. of pages:	10 (with cover page)

Email of Convenor:	marius.preda @ imt . fr

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg7

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7 MPEG 3D GRAPHICS CODING

ISO/IEC JTC 1/SC 29/WG 7 N225
October 2021, Virtual

	Title
	Metrics for Dynamic Mesh Coding

	Source
	WG 7, MPEG 3D Graphics Coding

	Status
	Approved

	Serial Number
	20994

1. [bookmark: _Toc86349376]Abstract
In this output document, we present current results on objective metrics for mesh compression evaluation. We present two proposals, a point-base proposal that reuses the objective metric thoroughly employed for point clouds, and a novel image-based metric that can assess the visual quality of meshes using conventional mesh rendering techniques.

Contents
1.	Abstract	1
2.	Introduction	3
3.	Metrics requirements	6
4.	Prior art on mesh metrics	7
4.2.	Static meshes	7
4.3.	Dynamic meshes	8
5.	Point-based metric	10
5.1.	Grid sampling	10
5.2.	Face sampling	11
5.3.	Map sampling	11
5.4.	Surface subdivision sampling (sdiv and ediv)	12
5.5.	Geometric Distortion	13
5.6.	Computing D1	13
5.7.	Computing D2	13
5.8.	Geometric PSNR Calculation	14
5.9.	Attribute PSNR Calculation	14
6.	Image-based sampling metric (IBSM)	15
6.1.	Rendering of one view	15
6.2.	Positioning of views	16
6.3.	Distortion for one view	17
7.	Software usage for computing the point cloud and image-based metrics	19
7.1.	Lossless compression metric evaluation	19
7.2.	Lossy compression metric evaluation	19
7.3.	Sequence processing	20
8.	Experimental results	22
8.1.	pcc_mmetric surface sampling results	22
8.2.	pcc_mmetric image-based results	22
9.	Conclusion	24
10.	Bibliography	24

2. [bookmark: _Toc86349377]Introduction
For the evaluation of mesh compression algorithms, a suitable objective metric is desired. Many mesh compression metrics already exist, but they do not fulfil the requirements of different topology per frame and vertex density between two meshes. The next two Sections present further details on the requirements for the mesh compression metrics and provide a review of the state-of-the-art on current metrics available.

Here we present two metrics for dynamic mesh evaluation: one based on the well-known D1/D2 metric used in point cloud compression (point-based metric), and another one based on evaluation of projected images (image-based metric).

The point-based approach is originally presented in [1]. We perform a surface sampling of the input meshes to generate their respective point cloud representations. With the sampled surface point clouds, we calculate D1/D2 and Y-PNSR metrics between two meshes, using MPEG pcc_error [2] or PCQM [3], as shown in Figure 1. Even though there are some known issues with this approach (for instance, holes and temporal inconsistencies are not well captured), the pcc_error metric was thoroughly used during the point cloud standardization and could be a good starting point for a metric suitable for mesh compression. In addition, PCQM is a perceptually correlated metrics that can provide more insights into the evaluated point clouds. Nevertheless, this approach heavily depends on the sampling step, which needs to apply a dense sampling to obtain good metrics, which can take a significant amount of time to obtain the results.

[bookmark: _Ref62671476]Figure 1: using pcc_error for mesh evaluation

The image-based approach was presented in [4] and [5]. An overview of the approach is given in Figure 2. For each frame, the reference and the distorted models are rendered for several view directions , using an orthographic projection (see section 6). The images obtained from the rendering of reference and distorted models are then compared using some adapted image MSE/PSNR metrics (see section 6). The results are averaged over a set of view directions for the frame and over the frames of the sequence.

[image: Diagram

Description automatically generated]
[bookmark: _Ref77067801]Figure 2. Overview of the image-based metric. Ref/DisColor are the color images/buffers. Ref/DisMask are binary images where pixel[i,j]=1 if there exist a projection in associated color buffer, and 0 otherwise. Ref/DisDepth are the depth buffers. All the buffers have same dimensions of 2048x2048 pixels.

The number of views is fixed to 16 and the resolution of image, depth and mask buffers is set to 2048 x 2048 pixels. The Figure 3 gives an example of rendered image buffers for the 16 view directions.
[image: Graphical user interface, application

Description automatically generated]
[bookmark: _Ref77069332]Figure 3. Example of color images generated for the basketball player using 16 views.

The implementations of both approaches is available in the pcc_mmetric software, which can be obtained from the git repository (http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-mmetric).

pcc_mmetric is described in input document m55718 [6] and has the capability of providing sampling of the input mesh surface based on four different methods: grid, map, subdivision (sdiv) or face. The software provides point-based metric computation using MPEG pcc_error (pcc) and PCQM (pcqm), as well as image-based metric computation (ibsm). Furthermore, the software can quantize an input mesh and provide metrics also for lossless comparison, that is, if meshes have exact vertex position and attributes. An evolution to take their connectivity equality, up to only a defined permutation of the connectivity that does not change the original winding of the triangles was recently added to the software. More details on the software can be found in [7], [4] and [5].

In this document we review the draft requirements and the state-of-the-art of mesh compression metrics from input document m55717 [8], detail current implemented methods for surface sampling presented in input documents m55718 [6] and image-based metrics presented in input document m57389 [4], and analyze the effect of the metric when coding the input meshes with the MPEG mesh compression standard, SC3DMC, available at http://mpegx.int-evry.fr/software/MPEG/PCC/tfan_mesh_anchor and the Draco software, available at https://google.github.io/draco/.

3. [bookmark: _Toc86349378]Metrics requirements
In [10, 11] the lossy statements of the draft requirements propose to allow the compressed mesh to not preserve the topology of the original mesh. Also recall that these same draft requirement documents state that topology of meshes may vary over time.
1. The metric shall thus be able to compare original and degraded mesh “frames” with different topology or vertex density,
2. The metric shall also be able to analyze sequences with varying topology or vertex density over time.

The metric shall provide accurate global measures for:
1. Geometry distortions due to the lossy compression of mesh vertex positions
2. Photometry distortions introduced either on:
a. colors per vertex, due to vertex position and/or vertex color attributes lossy compression
b. or on colors from texture map, due to vertex position and/or vertex UV attribute and/or texture map lossy compression (or downscaling for maps)
3. Optionally, attributes distortions introduced on normal vectors due to lossy compression. Normal attributes might be on a per vertex basis or attribute map.
4. In addition, a generic global measure could be provided for generic (user defined) attributes.
The metric shall provide accurate global measures representative of the metric evolution over the frames of the animation, hence of the degradation introduced to the entire animation through temporal artefacts.

As objective metrics play a dominant role for the adoption of tools, it is quite important to have a close correlation between the metric scores and subjective test results.

4. [bookmark: _Ref58246190][bookmark: _Toc86349379]Prior art on mesh metrics
We base this quick study on the very complete review of “Perceptual Metrics for Static and Dynamic Triangle Meshes” [12]. In the rest of the document reference citations of the form [Len99] are directly extracted from [12], and the reader should refer to this document for details.

4.2. [bookmark: _Toc86349380]Static meshes
The Table 1 (extracted from [12]) present a summary of existing metrics for static meshes.
We added colors to these tables to highlight adequation with requirements introduced in the previous section. We also added a column to mention whether the metric takes texture map distortions into account or not.

[bookmark: _Ref58252090]Table 1. Properties of existing metrics for static meshes. The column ‘Constraints’ indicates if the metric requires the meshes to share the same connectivity or the same level of details. *The method [CDGEB07] does not require similar connectivity but similar vertex density. The correlation data have been synthesized from [LC10], [Lav11], [VR12], [WTM12], [TWC12] and [13]. Table from [12].
	
	Image/model
	HVS/signal
	Principle
	Constraints
	Texture
Colors
	Correlation

	[Red97, LH01, WLC*03]
	Image
	HVS
	CSF
	No
	possible
	Not evaluated

	[BM98], [Lin00], [QM08]
	Image
	HVS
	Sarnoff VDM
	No
	possible
	Not evaluated

	[Mys98], [RPG99], [DPF03], [ZZDZ10]
	Image
	HVS
	Daly VDP
	No
	possible
	Not evaluated

	[MG10]
	Image/model
	HVS
	Spatio-temporal CSF [BK80]
	No
	?
	Not evaluated

	FQM [14]
	Image/Model
	Signal
	MSE
	Yes
	Yes
	

	Metro [15], MeshDev [16]
	Model
	Signal
	Hausdorff distance
	No
	No
	Poor

	[17]
	Model
	Signal
	MSE
	Yes
	Yes
	

	GL1[KG00]
	Model
	Signal
	Geometric Laplacian
	Yes
	No
	Poor

	GL2[SCOT03]
	Model
	Signal
	Geometric Laplacian
	Yes
	No
	Poor

	SF[BHM09]
	Model
	Signal
	Triangle deformation
	Yes
	No
	Poor

	3DWP M[CDGEB07]
	Model
	Signal
	Roughness
	No*
	No
	Moderate

	MSDM[LDD*06]
	Model
	Signal
	Local curvature statistics
	Yes
	No
	Moderate | High

	MSDM2 [Lav11]
	Model
	Signal
	Local curvature statistics
	No
	No
	High

	TPDM[TWC12]
	Model
	Signal
	Curvature directions
	No
	No
	High

	FMPD[WTM12]
	Model
	Signal
	Roughness
	No
	No
	High

	DAME[VR12]
	Model
	Signal
	Dihedral angles
	Yes
	No
	High

	CM1,CM2 [13]
	Image
	
	
	No
	Yes
	High

From the lecture of Table 1 we can see that most Model based solutions do not include support for texture maps and that half of the Model based solutions have constraints on mesh topology, which does not fit the current draft requirements.

Regarding texture support for model based, [17] only incorporates texture resolution information in a weighted combination with geometry MSE metric. “FQM [14] is a metric especially designed for textured mesh quality assessment. It is defined as a weighted combination of two simple error measurements: the mean squared surface distance and the mean squared error over texture pixels. Optimal weights are computed using cross-validation” (cited from [13]). In [13], Guo et al. proposes “simple linear combination of its geometry quality and its texture quality, measured, respectively, by a 3D mesh metric QG (MSDM2 or SDCD) and an image metric QT(MS-SSIM)”. The parameters of the combination are learned from perceptual user tests. They demonstrate better results than FQM examining Spearman and Pearson correlations between the objective metric values and the subjective scores.

Finally, image-based metrics could be interesting to circumvent the texture mapping issue. In any case, texture color support is possible by incorporating the texture mapping in the rendering step. Another advantage of image-based metrics resides in the fact that they do not impose any constraints on the compared meshes. However, the accuracy of the metric strongly depends on the rendering resolution and conditions (texture sampling/filtering, number of views, lighting or not, ...).

4.3. [bookmark: _Toc86349381]Dynamic meshes
The following three paragraphs are cited from the section 4.1. “Static mesh metrics applied on dynamic meshes” of [12].

“As mentioned before, any of the metrics for static meshes presented in previous sections can be applied on dynamic meshes in the per-frame fashion, using the per-frame result sum, average or maximum as a result. Some authors display the result of some particular static mesh metric for each frame in the form of a time-dependency graph.

Early papers on dynamic mesh compression, such as [Len99] and [IR03], have used average SNR to evaluate the amount of distortion caused by the lossy encoding. Later, after publication of the Metro tool, metrics based on Hausdorff distance became more popular. Some papers—[MZP06] and [KPA09]—show temporal development of root mean squared error (RMSE) or its average, although others—[HKL09]—show the temporal development of Hausdorff distance.

The common problem of all these metrics is the lack of correlation with human perception, which has already been identified in one of the first works on dynamic mesh compression by Lengyel [Len99]. The work of Lee et al. [LKT*07], where the sum of Discrete Shape Operator differences is used (similar to the metric in [KG00]), is one of the few exceptions, where a perceptually motivated static mesh metric has been used for dynamic mesh comparison. But, even in this case, the metric cannot capture any temporal artefacts that may arise in dynamic mesh processing.”

The Table 2 (extracted from [12]) present a summary of existing metrics for dynamic meshes.
We added colors to these tables to highlight adequation with draft requirements introduced in the previous section. We also added a column to mention whether the metric takes texture map distortions into account or not. From the lecture of Table 2 we can see that none of presented solutions meets all the requirements. One can observe that most solution does not handle temporal artefacts explicitly.

Among the five solutions presented, PDiff [LO11] is the most interesting one, with respect to the draft requirements, since it supports texture colors and is not constrained to any topology. To solve the resolution limitations induced by image-based technique PDiff renders the model from different distances (possibly including closeups). They evaluate their metrics on three specific aspects: the texture (linked to the geometry, the UVs and the map quality), the silhouette (linked to the geometry quality) and the lighting (linked to the normal vectors and geometry quality). Even if the experiment provides interesting results, they do not formalize clearly their metric that relies on PerceptualDiff [Yee et al. 2001].

[bookmark: _Ref58252102]Table 2. Properties of existing metrics for dynamic meshes (the column ’Constraints’ indicates if the metric require the meshes to share the same connectivity). Table from [12].
	
	Principle
	Based on static mesh metric
	Constraints
	Texture
Colors
	Handling of temporal artifacts
	Correlation

	KG [KG04]
	Normalized average MSE
	Yes
	Yes
	No
	No
	Poor

	Da [JKJ*04]
	Error vectors
	No
	Yes
	
	No
	Poor

	4D Hausdorff [VS06]
	Hausdorff distance
	No
	No
	No
	No
	Poor

	STED [VS11]
	Edge difference
	No
	Yes
	No
	Yes
	High

	PDiff [LO11]
	Image comparison
	Yes
	No
	Yes
	No
	Not evaluated

Finally, another approach, not represented in the literature, is to highly sample the textured meshes and to use colored point cloud metrics [2, 3] for the comparisons. We will devise some experimentations made with such method in the next session.

5. [bookmark: _Toc86349382]Point-based metric
The point-based metric converts the reference and distorted meshes into two point clouds by applying the sampling procedure described in section 5.1. The grid sampling was chosen as the sampling method to evaluate the point-based metric, but other sampling options are possible, and are described in sections 5.2, 5.3 and 5.4. The two point clouds are then compared by applying the point cloud metric described in sections 5.5, 5.6, and 5.7.

5.1. [bookmark: _Ref86232504][bookmark: _Toc86349383]Grid sampling
The point cloud is created by performing ray-casting in the axis direction (x,y,z), depending on the normal of the triangle. A hit test determines if the casted ray hits the triangle, then the color is obtained by barycentric interpolation (to determine the UV coordinate of the point), and then bilinear interpolation (to get the RGB value from texture map). The coordinate of the point in the normal direction is rounded, while the other directions are the same, since they are obtained from in integer positions of the casted ray.

Since the meshes are voxelized, all the vertices are in an integer position of the 3D grid. If an orthogonal projection of each triangle is used, the exact position of the vertices may be part of the sampled surface, depending on the chosen grid. The color of those points is obtained through bilinear interpolation, if UV mapping is used, otherwise the vertex color should be used. Figure 4 shows the surface sampling for the uncompressed longdress mesh, frame 1051.

[bookmark: _Ref62672517]Figure 4: Orthogonal Mesh Surface Sampling
The sampling process is performed individually in each triangle, so it creates a lot of duplicate points. But the pcc_metric software has the option to either remove the duplicates by keeping the first point or averaging all the duplicates. The sampling grid used can also be an input parameter, but currently we do not change the resolution of the input mesh and perform sampling in a grid with similar size. For instance, for the 8i sequences, the grid size is 1024 x 1024 x 1024. We believe that there is still room for improvement in the metric, by creating more points in areas that are not well sampled, due to the angle between the triangle surface and the projection direction. For instance, the implementation in pcc_mmetric uses all three sampling directions to create the points in the mesh surface, but this can lead to clusters of samples in the surface. It also allows to choose the direction according to the normal of the triangle (--useNormal option). Furthermore, neighboring triangles with different orientations may have issues in the shared edges. Strategies as the ones proposed in [18], e.g. to extend the primitives, could be applied to reduce the number of holes. However, color value of the added voxels should also be carefully selected.

5.2. [bookmark: _Ref86232521][bookmark: _Toc86349384]Face sampling
In [19], point cloud content was provided by Owlii from sampling a mesh surface. In their contribution, they also provided a software that performs the conversion. In summary, each triangle is sampled in a grid following the direction of the sides of the triangle. The sampled position is rounded to an integer value, and the color value is obtained by first estimating the UV coordinates of the sampled position using barycentric interpolation, and then doing bilinear interpolation in the UV map domain. In the provided software, the size of the grid at the sized of the triangles was given as an input parameter, and multiple layers could also be created along the normal direction.

In the pcc_mmetric software, sampling following Owlii’s approach is also possible. However, the positions of the sampled surface are not rounded and are still maintained in floating-point resolution. Because with this approach the edge and the vertices of the triangles are part of the sampling set, duplicate points occur in the final point cloud. Similar to the grid sampling, we also allow the software to remove duplicate points, either by choosing the attribute of the first one or just averaging all their attributes. Figure 5 shows the surface sampling for the uncompressed longdress mesh, frame 1051.

[bookmark: _Ref62672547]Figure 5: Regular surface sampling Mesh Surface Sampling
5.3. [bookmark: _Ref86232527][bookmark: _Toc86349385]Map sampling
The point cloud is created by performing back projection of the texels, that is, the integer positions in the UV maps. The color of each point is directly obtained from the texture map, but the position of the point in 3D space is obtained by performing barycentric interpolation of the vertices of the triangle. Notice that in this case, the vertices of the mesh may not be present in the point cloud, since the UV coordinates of the vertices are usually not an integer position (and do not represent a texel). Figure 6 shows the surface sampling for the uncompressed longdress mesh, frame 1051.

[bookmark: _Ref62672540]Figure 6: Texel back-projection Mesh Surface Sampling
Since the position of the points is obtained by combining the position of the vertices, the result is a floating-point value, which avoid duplicates in the resampled point cloud. The density of the point cloud will depend on the size of the texture map.

5.4. [bookmark: _Ref86232536][bookmark: _Toc86349386]Surface subdivision sampling (sdiv and ediv)
The point cloud is created by performing surface subdivision using the scheme presented in Figure 7. A triangle is divided into four triangles by selecting the center of each edges. Other triangle subdivision schemes could be envisioned but this one is simple and fast. The algorithm is recursive and subdivide faces until an area threshold is reached (sdiv) or a particular edge length is reached (ediv). This leads to a well-balanced point cloud with the property that original vertices are preserved, and edges are regularly sampled. An additional recursion stop criterion can use distance of projected vertices in the texture map (Figure 7. Right). By setting a distance in texels of 1, we can lead to a color signal accurate subdivision.

[image:][image:][image:]
[bookmark: _Ref62739333]Figure 7: left, triangle subdivision scheme. Center, top triangle subdivision stopped on map distance threshold (green grid represents pixels). Right: result of 8bit model with 1M points.

5.5. [bookmark: _Toc86349387]Geometric Distortion
Let and denote the original and the compressed point cloud obtained from the sampling procedure described in 5.1, respectively. Consider evaluating the compression errors, denoted as in point cloud relative to reference point cloud. The steps to compute both point-to-point error (D1) and point-to-plane error (D2) for geometric errors are summarized in sections 5.6 and 5.7and illustrated in Figure 8.
For each point in point cloud, i.e., the black point in the figure, identify a corresponding point in point cloud, i.e. the red point in the figure. Nearest neighbor is used to locate the corresponding point. In particular, a KD-tree search is used to perform the nearest neighbor search in order to reduce the computation complexity.

5.6. [bookmark: _Ref86232547][bookmark: _Toc86349388][bookmark: _Hlk85125925]Computing D1
Determine an error vector by connecting the identified point in reference point cloud [image:] to point in point cloud . The length of the error vector is the point-to-point error, i.e.,

Based on the point-to-point distances for all points , the point-to-point error (D1) for the whole point cloud, withas the number of points in point cloud, is defined as:

5.7. [bookmark: _Ref86232554][bookmark: _Toc86349389]Computing D2
Project the error vector along the normal direction and get a new error vector. In this way, the point-to-plane error is computed as,

The point-to-plane error (D2) for the whole point cloud is then defined as,

[image:]
[bookmark: _Ref86348889][bookmark: _Ref86348885]Figure 8: Illustration of point-to-point distance (D1) and point-to-plane distance (D2)

5.8. [bookmark: _Ref86232561][bookmark: _Toc86349390]Geometric PSNR Calculation
The geometric PSNR value is computed as:

[bookmark: _Hlk86330483]where is the maximum length of the sequence bounding box (maxBBLength) as specified in Table 3, and is the symmetric mean squared point-to-point () or point-to-plane () error, which are obtained by considering the maximum distortions and computed as follows:

 and .

For dynamic content, the peak value is unchanged over the frames of a sequence.

	Test material
dataset filename
	globalPosMin
	globalMaxPos
	maxBBLength

	
	(x)
	(y)
	(z)
	(x)
	(y)
	(z)
	

	Longdress
	-0.475553989
	-1.4576
	-0.284981996
	481.324005
	1023.37
	659.137024
	1024.8276

	Soldier
	-0.366236001
	1.10722005
	0.224947006
	508.764008
	1023.37
	637.421997
	1022.26277995

	Basketball_player
	-725.812988
	-483.908997
	-586.02002
	1252.02002
	1411.98999
	1025.34998
	1977.833008

	Dancer
	-902.244995
	-486.196991
	-670.518005
	621.093994
	1576.04004
	738.028992
	2062.237031

	Mitch
	-588.255981
	5.80515003
	-469.799011
	734.567993
	1829.69995
	697.179016
	1823.89479997

	Thomas
	-265.006989
	-4.04448986
	-248.710999
	320.546997
	1820.93005
	400.225006
	1824.97453986

	Football
	-0.000159517003
	3.32326999e-06
	0.000132931003
	1024
	980.619995
	966.692993
	1023.96268540018

	Levi
	-0.780686975
	-0.0424938016
	-0.594317973
	0.857237995
	1.90897
	0.687259018
	1.9514638016

[bookmark: _Ref86156199]Table 3 Sequence bounding box for the current dataset

5.9. [bookmark: _Toc86349391]Attribute PSNR Calculation
The attribute PSNR value is computed as:

For color attributes, the MSE for each of the three color components is calculated. A conversion from RGB space to YUV space is conducted using ITU-R BT.709, since YUV space correlates better with human perception. A symmetric computation of the distortion is utilized, in the same way as is done for geometric distortions. The maximum distortion between the two passes is selected as the final distortion. Since the color attributes for all test data have a bit depth of 8 bits per point, the peak value for PSNR calculation is 255.

6. [bookmark: _Ref81403677][bookmark: _Toc86349392]Image-based sampling metric (IBSM)
The image-based metric projects the reference and distorted meshes into several images as described in section 6.1. The position of the rendered views is described in section 6.2. The distortion of the projected images is then calculated as described in section 6.3.

6.1. [bookmark: _Ref86232667][bookmark: _Toc86349393]Rendering of one view
[image: Graphical user interface, application

Description automatically generated]
[bookmark: _Ref77070682]Figure 8. Rendering of image buffers for a given view direction vdi.

The rendering is part of the metric and is implemented inside the pcc_mmetric software.

The rendering of one view, is illustrated in Figure 8. The pixels of the image could be obtained by ray tracing or rasterization of the mesh. It is decided to use rasterization for performance reasons. Please refer to [20] for an excellent overview of rasterization and use of depth buffer for solving the visibility problem. Our rasterizer is somewhat simpler that the one presented in [20] since it implements only orthographic projection, hence does not require perspective correction steps.

The bounding sphere is obtained by summing the axis aligned bounding box of the distorted and reference objects and taking the diagonal and center of the resulting bounding box.

The view directions always points toward the center of the bounding sphere in 3D space.

The mesh is rendered using an orthogonal projection. The projection plane for the direction is the plane tangent to the bounding sphere and perpendicular to the view direction vector.

The mesh is rendered using clockwise back-face culling which suits all the models of the anchor in terms of visual rendering. See khronos Face Culling page [21] for a good explanation of what is back-face culling. This technique is used in every game, AR, VR systems to accelerate the rendering. The idea is to skip the rasterization of triangles for which the face normal is not facing toward the camera. The face normal is calculated by cross product of two edges and of the triangle. Therefore, depending if we use the edges clockwise or counter clockwise , the normal may be oriented on one side or the other.

Note: if the provided answer does not preserve faces orientations based on clockwise orientations it will get low MSE/PSNR scores for the metric.

The rendering step generates the color, the mask, and the depth buffers.
· The color buffer contains for each pixel i,j the RGB value, of the nearest projected triangle.
· In case of a textured mesh, the RGB color is obtained by bilinear interpolation of the texture map using triangle UV coordinates.
· In case of color per vertex meshes (no texture map), the vertex colors are blended using barycentric coordinates.
· The mask buffer contains for each pixel i,j a binary value set to 1 if a projection for this pixel exists and 0 otherwise.
· The depth buffer contains for each pixel i,j the distance from the projection plane to the 3D surface in 3D space.

6.2. [bookmark: _Ref86232685][bookmark: _Toc86349394]Positioning of views
The positioning of the 16 views, that is to say the set of orientations, is obtained by using a Fibonacci sphere lattice [22]. This distribution aims at generating points over a sphere in an evenly spaced manner. Once one has the points , the directions are the vectors passing through these points and pointing toward the center of the sphere. The Figure 3 gives an example of generated images for 16 views using this method.

The Fibonacci sphere samples are computed as follows:

const double pi = std::atan(1.0) * 4;

// golden angle in radians
Const float phi = (float)(pi * (3. - std::sqrt(5.)));

// glm::vec3 a vector of three floats, each entry a direction
std::vector<glm::vec3> camDir;

for (size_t i = 0; i < targetNbSamples; ++i) {

	float y = 1 - (i / float(targetNbSamples - 1)) * 2; // y goes from 1 to - 1
	float radius = std::sqrt(1 - y * y); 	 // radius at y
 	float theta = phi * i; // golden angle increment

	float x = std::cos(theta) * radius;
	float z = std::sin(theta) * radius;

	camDir.push_back(glm::vec3(x, y, z));
}

A special attention is also given to generate the up vectors (see Figure 8). The up vector determines, for a given direction , the rotation of the camera on the direction axis, and by side effect the final orientation of the model in the image. At the end, we obtain the camera matrix using the well-known LookAt function from OpenGL [23].

For a given view direction viewDir (), the viewUp () vector is defined as follows:

if (glm::abs(viewDir) == glm::vec3(0, 1, 0))
	viewUp = glm::vec3(0, 0, 1);
else
	viewUp = glm::vec3(0, 1, 0);

In other terms, whenever view direction is not a north or south pole, we use y axis vector as the up vector , otherwise we use the z axis vector as the up vector .

Those values were selected so most of the models visually renders head at top of image when rendered by side or front views. The special case of poles is the simplest positive default value for .

6.3. [bookmark: _Ref86232704][bookmark: _Toc86349395]Distortion for one view
The calculus of the distortion is based on the general Mean Squared Error (MSE) formula. Let be a sample of an original image, a sample of a distorted image and the width of both buffers in pixels. The for the two images is calculated as follows:

In the rest of this document, we will decline this formula to our needs, especially restricting processing to parts where the mask generated from the reference and distorted models is equal to one. Let be a matrix of same size of and (Each mask buffer contains for each pixel i,j a binary value set to 1 if a projection for this pixel exists and 0 otherwise).
[bookmark: _Hlk80694595]
[bookmark: _Hlk80787954]

Let be the width of the buffers in pixels. The combined number of projected pixels of all the view directions for one frame is:
[bookmark: _Hlk80787921]

A conversion from RGB space to YUV space is performed by using ITU-R BT.709, since YUV space correlates better with human perception.

In the following the color image/buffer is considered YUV.

Let be a sample of the color image/buffer of the reference model for view direction , a sample of the color image/buffer of the distorted model for view direction . The color MSE for the YUV images, noted , is calculated as follows on each component in :

Let be a sample of the depth image/buffer of the reference model for view direction , a sample of the depth image/buffer of the distorted model for view direction . Let be the dynamic range of the depth signal initialized with the maximum between the diagonals of the bounding boxes of both models. The depth MSE for the depth images/buffers, noted , is calculated as follows:

This depth renormalization to 255 is used to get geometric MSEs and PSNRs comparable to the color ones.

The final metric results per frame are the followings:

And the respective associated with are computed with the following formula:

The metric tool reports also the ratio of unmatched samples defined as follows:

where is given by:

Additionally, the metric tool reports also the ratio () of the bounding box diagonal of the reference and the diagonal of the bounding box of the distorted mesh as follows:

7. [bookmark: _Toc86349396]Software usage for computing the point cloud and image-based metrics
The “equ” and “ibsm” metrics are symmetrical, but the “pcc” is not. To ensure the numerical stability of the results among participants it is required that:
· the --modelA and --MapA are used for the reference model.
· the --modelB and --mapB are used for the distorted model.

7.1. [bookmark: _Toc86349397]Lossless compression metric evaluation
Lossless condition with log to console:

./mm compare \
 --mode equ \
 --inputModelA ref.obj –inputMapA ref.png \
 --inputModelB dis.obj –inputMapB dis.png > summary.txt

7.2. [bookmark: _Toc86349398]Lossy compression metric evaluation
Lossy condition on dequantized models using the point-based metric with log to console and statistics reporting into files:

./mm \
 reindex --sort oriented -i ref.obj -o ID:ref_reordered END
 sample --mode grid --gridSize 512 \
 --useNormal --useFixedPoint --minPos "$globalMinPos" --maxPos "$globalMaxPos" \
 --bilinear -i ID:ref_reordered -m ref.png -o ID:pcRef END\
 reindex --sort oriented -i dis.obj -o ID:dis_reordered END
 sample --mode grid --gridSize 512 \
 --useNormal --useFixedPoint --minPos "$globalMinPos" --maxPos "$globalMaxPos" \
 --bilinear -i ID:dis_reordered -m dis.png -o ID:pcDis END\
 compare --mode pcc \
 --inputModelA ID:pcRef --inputModelB ID:pcDis \
 --outputCsv perFrame.csv > summary.txt

Lossy condition on dequantized models using the image-based metric with log to console and statistics reporting into files:

./mm compare --mode ibsm \
--inputModelA ref.obj --inputMapA ref.png \
--inputModelB dis.obj --inputMapB dis.png \
--outputCsv perFrame.csv > summary.txt

Attention: Lossy condition shall be applied on dequantized models.

Alternatively, one can dequantize the voxelized model on the fly while computing the metric. The values for the quantization parameters (geometry precision, QP, and texture coordinate precision, QT) and the quantization ranges (minPos, maxPos) are necessary. Those values can be loaded in one call from the analysis file using sh/bash as follows:

source $seqName_statistics_all.log

Dequantizing in one call is then performed as follow for textured meshes, assuming distorted model voxDis.obj is also quantized (remove the texture/UV related for per vertex color meshes), for point-base metrics:

./mm
 dequantize --inputModel voxRef.obj --outputModel ID:deqRef \
--qp $QP --minPos ”$globalMinPos” --maxPos ”$globalMaxPos”
[bookmark: _Hlk85150319]--qt $QT --minUv ”0 0” --maxUv ”1.0 1.0” END \
 reindex --sort oriented -i ID:deqRef -o ID:ref_reordered END
 sample --mode grid --gridSize 512 \
 --useNormal --useFixedPoint --minPos "$globalMinPos" --maxPos "$globalMaxPos" \
 --bilinear -i ID:ref_reordered -m ref.png -o ID:pcRef END\
 dequantize --inputModel voxDis.obj --outputModel ID:deqDis \
--qp $QP --minPos ”$globalMinPos” --maxPos ”$globalMaxPos”
--qt $QT --minUv ”0,0” --maxUv ”1.0,1.0” END \
[bookmark: _Hlk86155576] reindex --sort oriented -i ID:deqDis -o ID:ref_reordered END
 sample --mode grid --gridSize 512 \
 --useNormal --useFixedPoint --minPos "$globalMinPos" --maxPos "$globalMaxPos" \
 --bilinear -i ID:ref_reordered -m dis.png -o ID:pcDis END\
 compare --mode pcc \
 --inputModelA ID:pcRef --inputModelB ID:pcDis \
 --outputCsv perFrame.csv > summary.txt

Similarly, for image-base metrics:

./mm dequantize --inputModel voxRef.obj --outputModel ID:deqRef \
--qp $QP --minPos ”$globalMinPos” --maxPos ”$globalMaxPos”
--qt $QT --minUv ”0 0” --maxUv ”1.0 1.0” END \
 dequantize --inputModel voxDis.obj --outputModel ID:deqDis \
--qp $QP --minPos ”$globalMinPos” --maxPos ”$globalMaxPos”
--qt $QT --minUv ”0 0” --maxUv ”1.0 1.0” END \
compare --mode ibsm \
--inputModelA ID:deqRef --inputMapA ref.png \
--inputModelB ID:deqDis --inputMapB dis.png \
--outputCsv perFrame.csv> summary.txt

7.3. [bookmark: _Toc86349399]Sequence processing
Following sample demonstrates how to execute commands on a numerated sequence of objects ranging from 00150 to 00165 included. The "%3d" part of the file names will be replaced by the frame number ranging from firstFrame to lastFrame, coded on 3 digits. The syntax command for point-based metrics is as follows:

./mm \
 sequence --firstFrame 150 --lastFrame 165 END\
 dequantize --inputModel voxRef_00%3d.obj --outputModel ID:deqRef \
--qp $QP --minPos ”$globalMinPos” --maxPos ”$globalMaxPos”
--qt $QT --minUv ”0 0” --maxUv ”1.0 1.0” END \
 reindex --sort oriented -i ID:deqRef -o ID:ref_reordered END
 sample --mode grid --gridSize 512 \
 --useNormal --useFixedPoint --minPos "$globalMinPos" --maxPos "$globalMaxPos" \
 --bilinear -i ID:ref_reordered -m ref_00%3d.png -o ID:pcRef END\
 dequantize --inputModel voxDis_00%3d.obj --outputModel ID:deqDis \
--qp $QP --minPos ”$globalMinPos” --maxPos ”$globalMaxPos”
--qt $QT --minUv ”0,0” --maxUv ”1.0,1.0” END \
 reindex --sort oriented -i ID:deqDis -o ID:ref_reordered END
 sample --mode grid --gridSize 512 \
 --useNormal --useFixedPoint --minPos "$globalMinPos" --maxPos "$globalMaxPos" \
 --bilinear -i ID:ref_reordered -m dis_00%3d.png -o ID:pcDis END\
 compare --mode pcc \
 --inputModelA ID:pcRef --inputModelB ID:pcDis \
 --outputCsv perFrame.csv > summary.txt

And the syntax command for image-base metrics is as follows:

./mm sequence --firstFrame 150 --lastFrame 165 END\
 dequantize --inputModel voxRef_00%3d.obj --outputModel ID:deqRef \
 --qp $QP --minPos ”$globalMinPos” --maxPos ”$globalMaxPos”
 --qt $QT --minUv ”0 0” --maxUv ”1.0 1.0” END \
 dequantize --inputModel voxDis_00%3d.obj --outputModel ID:deqDis \
 --qp $QP --minPos ”$globalMinPos” --maxPos ”$globalMaxPos”
 --qt $QT --minUv ”0 0” --maxUv ”1.0 1.0” END \
 compare --mode ibsm \
 --inputModelA ID:deqRef --inputMapA ref_00%3d.png \
 --inputModelB ID:deqDis --inputMapB dis_00%3d.png \
 --outputCsv perFrame.csv > summary.txt

On the file summary.txt, the Maximum, the Minimum, the Mean, the Variance, and the Standard deviation of the metric evaluated on each frame of the sequence can also be found.

8. [bookmark: _Toc86349400]Experimental results
8.1. [bookmark: _Toc86349401]pcc_mmetric surface sampling results
Several results for the pcc_mmetric software are available in [23]. Here we reproduce in Figure 10 the results for longdress also presented in [23], but using only the subdivision sampling strategy with the edge criteria (ediv). During MPEG 133rd meeting, ediv sampling option was deemed the sampling strategy that most optimally sampled the surface of a mesh and was appropriate for the metric criteria. However, some issues were raised during the meeting of instability of the threshold value, as well as time of computation of the metric. The optimal parameters provided during the meeting targeted a total of around 4 million points sampled on the surface of the mesh, but this number of points lead to a very slow metric evaluation, due to the usage of a kdtree to find the corresponding points. To reduce computation time, a reduced number of points obtained by setting the grid size to 512 is being used.

[image:]
[bookmark: _Ref72525369]Figure 10: ediv sampling criteria for longdress frame compressed with several different QP
Further results provided in the following meetings showed that the grid sampling had a stable behavior and was decided to be used as the sampling choice for the mesh evaluation. Further validation of metric is currently undergoing.

8.2. [bookmark: _Toc86349402]pcc_mmetric image-based results
In [4] and [5], several results for the proposed image-based metric were given. The results for a frame of the basketball sequence, when changing quantization parameters, is given in Figure 11.

[image:]
[bookmark: _Ref80558175]Figure 11:Basketball_player frame 1, with different quantization parameters for texture

9. [bookmark: _Toc86349403]Conclusion
We presented two objective metrics for mesh compression evaluation, one based on mesh sampling and existing point cloud metrics pcc_error and PCQM, and another one based on image-based metric. Since both metrics generated correlated results, but the image-based metrics may miss some artifacts due to self-occlusion, the group decided to use the point-based metric with a small number of samples as the main metric for evaluation, but also report the image-based metric as an informative objective metric in the mesh compression activities. Further investigation related to the metric, such as a thorough comparison of both image-base and point-base metrics is being conducted to improve the performance and reliability of the proposed metrics.

Bibliography

[1] 	J.-E. Marvie, J.-C. Chevet, Y. Olivier, J. Ricard and P. Andrivon, "m55327 Proposition of an anchor and a test model for coding animated meshes," ISO/IEC JTC 1/SC 29/WG 7/m55327, 2020.
[2] 	MPEG PCC pcc_error command from MPEG 123, November 9, 2018, v0.12.3.
[3] 	G. Meynet, Y. Nehmé, J. Digne and G. Lavoué, "PCQM - A Full-Reference Quality Metric for Colored 3D Point Clouds," in Twelfth International Conference on Quality of Multimedia Experience (QoMEX), 2020.
[4] 	"Image based mesh metric proposal, ISO/IEC JTC 1/SC 29/WG 7 Doc. m57389, Online, July 2021".
[5] 	"Mesh metric software v0.1.11 updates and review, ISO/IEC JTC 1/SC 29/WG 7 Doc. m57390, Online, July 2021".
[6] 	"m55718 [V-PCC][software] Proposition of mesh metric tools ISO/JCT SC29 WG7 Online," January 2021.
[7] 	J.-E. Marvie, "[V-Mesh][EE4.1] merror software update and review ISO/JCT SC29 WG7 Online".
[8] 	"m55717 [V-PCC][requirements] An analysis of metrics for dynamic meshes ISO/JCT SC29 WG7 Online," January 2021.
[9] 	"m55582 Use Cases and Requirements for Mesh Compression ISO/JCT SC29 WG7 Online," October 2020.
[10] 	"m55586 Use Cases and Requirements for Mesh Compression Updated ISO/JCT SC29 WG7 Online," October 2020.
[11] 	M. Corsini, M.-C. Larabi, G. Lavoué, O. Petrík, L. Vása and K. Wang, "Perceptual Metrics for Static and Dynamic Triangle Meshes," Computer Graphics Forum, pp. 101-125, 2013.
[12] 	J. Guo, V. Vidal, I. Cheng, A. Basu, A. Baskurt and G. Lavoué, "Subjective and Objective Visual Quality Assessment of Textured 3D Meshes," ACM Trans. Appl. Percept., pp. 11:1-11:20, 2017.
[13] 	G. A. Dihong Tian, "FQM - a fast quality measure for efficient transmission of textured 3D models.," in ACM Multimedia, 2004.
[14] 	P. Cignoni, C. Rocchini and R. Scopigno, "Metro - Measuring Error on Simplified Surfaces," Comput. Graph. Forum, pp. 167-174, 1998.
[15] 	M. Roy, S. Foufou and F. Truchetet, "Mesh Comparison Using Attribute Deviation Metric," Int. J. Image Graph., p. 127, 2004.
[16] 	Y. Pan, I. Cheng and A. Basu, "Quality metric for approximating subjective evaluation of 3D objects," IEEE Transactions on Multimedia, vol. 7, pp. 269 - 279, 2005.
[17] 	N. Blog, "Basic of GPU Voxelization," [Online]. Available: https://developer.nvidia.com/content/basics-gpu-voxelization .
[18] 	"m42816 Owlii Dynamic Human Textured Mesh Sequence Dataset ISO/JCT SC29 WG11 San Diego," April 2018.
[19] 	"[9] Rasterization: a Practical Implementation, https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation/visibility-problem-depth-buffer-depth-interpolation".
[20] 	"Face Culling, https://www.khronos.org/opengl/wiki/Face_Culling".
[21] 	"Fibonacci sphere lattice, http://extremelearning.com.au/evenly-distributing-points-on-a-sphere/".
[22] 	h.-R. LookAt function from OpenGL.
[23] 	J.-E. Marvie, "[V-Mesh][EE4.1] On mesh metrics - summary report ISO/JCT SC29 WG7 Online," 2021.
[24] 	"m56119 [PCC-MESH] Metric for mesh compression evaluation ISO/JCT SC29 WG7 Online," January 2021.
[25] 	"MPEG SVN Repository," [Online]. Available: http://wg11.sc29.org/svn/repos/MPEG-04/Part16-Animation_Framework_eXtension_(AFX)/trunk/3Dgraphics/SC3DMC/trunk/.

2

image1.jpeg

image2.png

image3.png

image4.png

image5.png

image6.png

image50.png

image7.png

image70.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.tmp

image17.emf

