
 ISO/IEC JTC 1/SC 29/WG 7 N[image:]233

ISO/IEC JTC 1/SC 29/WG 7
MPEG 3D Graphics Coding
Convenorship: AFNOR (France)

Document type:	Output Document

Title:	Performance analysis of currently AI-based available solutions for PCC

Status:	Approved

Date of document:	2021-12-02

Source:	ISO/IEC JTC 1/SC 29/WG 7

Expected action:	None

Action due date:	None

No. of pages:	45 (with cover page)

Email of Convenor:	marius.preda @ imt . fr

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg7

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7 MPEG 3D GRAPHICS CODING

ISO/IEC JTC 1/SC 29/WG 7 N233
October 2021, Virtual

	Title
	Performance analysis of currently AI-based available solutions for PCC

	Author
	Alexandre Zaghetto

	Source
	WG7, MPEG 3D Graphics Coding

	Status
	Approved

	Serial Number
	21006

Abstract
An initial performance evaluation of the different AI-based point cloud compression solutions [1] was released after the 4th WG7 (135th MPEG) meeting in July 2021. The rate-distortion performance of four proposals was evaluated, namely pcc_geo_cnn_v2, pcgcv2, adl-pcc and fractional super resolution. The first three proposals are AI-based, while fractional super-resolution is a non AI-based post-processing technique applied to G-PCC reconstructed point. To reflect the discussions conducted during the 5th WG7 (136th MPEG) meeting in October 2021, this document extends the performance analysis to include runtimes for the pcgcv2 solution. The use of PyTorch as an open source machine learning framework was recommended at the 5th WG7 MPEG meeting. Consequently, we limited the runtime evaluation to pcgcv2 only, because of its use of the PyTorch framework. From the available solutions, pcc_geo_cnn_v2 and adl-pcc are implemented using the TensorFlow framework. Fractional super-resolution is not an AI-based solution and is implemented in GNU octave. This method is included only as an additional reference. A summary of Python and PyTorch performance evaluation tools is also presented.

1 Introduction
A synthesis of the AI-based point cloud compression solutions presented in the 4th WG7 meeting, more specifically those discussed in the following documents, is presented:
· m57301 (Sony): Discussion on Point Cloud Geometry Compression Using Machine Learning [1],
· m57556 (IST): DL-based Point Cloud Geometry Coding Software Availability [2]; and
· m57453 (Nanjing Univ/OPPO) [3]: A Geometry Compression Framework for AI-based PCC via Sparse Convolution.
During the meeting, the possibility of applying super-resolution to G-PCC output point clouds as an alternative method was mentioned. Thus, an additional comparison with a fractional super-resolution tool [4] is also performed.
In Section 6, this document also extends the performance analysis to include runtimes for the pcgcv2 solution, reflecting part of the discussions conducted during the 5th WG7 (136th MPEG) meeting in October 2021

2 Available Solutions
Three ML-based solutions were presented, namely, pcc_geo_cnn_v2 [1], pcgcv2 [2] and adl-pcc [3]. An additional fractional super resolution tool, Fractional-SR [4], will also be briefly discussed. In the next subsections the general characteristics of each solution will be presented.

2.1 pcc_geo_cnn_v2
The pcc_geo_cnn_v2 solution was presented in m57301 [1], which introduces the discussion about Point Cloud Geometry Compression using the “Improved Deep Point Cloud Geometry Compression” architecture proposed by Maurice Quach, Giuseppe Valenzise and Frederic Dufaux (Université Paris-Saclay).

2.1.1 Main Features and Architecture
In pcc_geo_cnn_v2 a set of contributions to improve deep point cloud compression is proposed:
· using a scale hyperprior model for entropy coding;
· employing deeper transforms;
· a different balancing weight in the focal loss;
· optimal thresholding for decoding; and
· sequential model training.
[image:]
Figure 1. pcc_geo_cnn_v2 general architecture. See [1] for a detailed description.
2.1.2 References
· Paper: https://arxiv.org/abs/2006.09043
· Software: https://github.com/mauriceqch/pcc_geo_cnn_v2
· License: MIT License
2.1.3 Requirements
· python 3.6.9
· tensorflow 1.15.0
· tensorflow-compression 1.3
· CUDA 10.0.130
· cuDNN 7.4.2

2.1.4 Datasets
· Training: subset of the ModelNet40: https://modelnet.cs.princeton.edu/
· Models are trained on a subset of the ModelNet40 dataset. First, the dataset is sampled into voxelized point clouds with resolution 512. Then, the 200 largest point clouds are selected. Point clouds are divided into blocks with resolution 64. The 4000 largest blocks are selected.
· Test: 8iVFB dataset: http://plenodb.jpeg.org/pc/8ilabs
· longdress_vox10_1300
· loot_vox10_1200
· redandblack_vox10_1550
· soldier_vox10_0690

2.2 pcgcv2

The pcgcv2 proposal is presented in m57453 [2], which proposes a geometry compression framework for AI-based PCC based on sparse convolution. In the proposed method, the point cloud is represented by sparse tensor and processed by spatially sparse Convolution Neural Networks (CNN). More specifically, sparse CNNs are employed to exploit the spatial dependency between voxels and predict the occupancy probability, which will be used for entropy coding or binary classification of voxel occupancy symbols.

2.2.1 Main Features and Architecture

The proposed framework includes both lossless and lossy geometry compression, and it also can provide scalable coding capability. In the present draft document, only the lossy aspect is evaluated. For its lossless compression capabilities, see document m57453 [2].

[image:]

Figure 2. PCGCv2 general architecture for lossy compression. See [2] for a detailed description.

2.2.2 References
· Paper: https://arxiv.org/pdf/2011.03799.pdf
· Software: https://github.com/NJUVISION/PCGCv2
· License: MIT License
2.2.3 Requirements
· python >=3.7
· pytorch >=1.7
· torchac 0.9
· CUDA >=10.2
· MinkowskiEngine >=0.5
·
2.2.4 Datasets
· Training: ShapeNet: https://shapenet.org/
· Contains ≈51,300 CAD surface models. These models are first densely sampled to generate point clouds, and then randomly rotated and quantized to 7-bit precision for each dimension. The number of points in each point cloud is randomized without imposing any constraints.

· Test: 8iVFB dataset: http://plenodb.jpeg.org/pc/8ilabs
· longdress_vox10_1300
· loot_vox10_1200
· redandblack_vox10_1550
· soldier_vox10_0690

2.3 adl-pcc

The adl-pcc proposal is presented in m57556 [3], which aims at informing the MPEG community through SC29/WG7 on the public release of software for a Deep Learning (DL)-based Point Cloud (PC) geometry coding solution, as an effort to contribute to the MPEG Point Cloud Coding activity related to learning-based coding.

2.3.1 Main Features and Architecture
The proposed coding solution divides the point cloud into 3D blocks and selects the most suitable available deep learning coding model to code each block, thus maximizing the compression performance.
[image:]
Figure 3. ADL-PCC general architecture for lossy compression. See [3] for a detailed description.
2.3.2 References
· Paper: https://www.it.pt/Publications/PaperJournal/30381
· Software: https://github.com/aguarda/ADLPCC
· License: Apache-2.0 License: https://www.apache.org/licenses/LICENSE-2.0
2.3.3 Requirements
· python 3.6.9
· tensorflow 1.15
· tensorflow-compression 1.3
· CUDA Version 10.0.130
· cuDNN 7.6.5

2.3.4 Datasets
[image:]

2.4 Fractional SR
This method is presented in [4] and proposes to super-resolve voxelized point clouds down-sampled by a fractional factor, using lookup-tables (LUT) constructed from self-similarities from its own down-sampled neighborhoods.

2.4.1 [bookmark: _heading=h.yh6ljh31ze5v]Main Features and Architecture
Does not require training, thus presenting reduced complexity in comparison to ML-based approaches. Presents comparable results with pcc_geo_cnn_v2 and adl-pcc for solid 10 and 11-bit point clouds. Applied as a G-PCC post-processing step.

[image:]
(a)

[image:]
(b)
Figure 3. Fractional-SR general architecture. See [4] for a detailed description.

2.4.2 [bookmark: _heading=h.fz4ixhtve4p5]References
· Paper: https://doi.org/10.36227/techrxiv.15032052.v1
· Software: https://github.com/digitalivp/PCC_LUT_SR
· License: MIT Licence
2.4.3 [bookmark: _heading=h.6t0ykwd5y0hx]Requirements
· GNU Octave
2.4.4 [bookmark: _heading=h.qq5ovvg5qacr]Dataset
[image:]

3 Test and Training Set Selection

To provide a preliminary comparison of the proposals presented in Section 2, the test set selection criteria presented in the next sections were applied.

3.1 Original Set

Point clouds presented in Table 1 are point clouds taken from the G-PCC CTC [5]. In m55485 [6], “G-PCC EE13.46 review of v11 attribute coding,” the classification of point clouds according to density/use case criteria is proposed. According to m55485, the classes are solid, dense, sparse, scant, for surface point clouds, and am-fused, am-frame, for LiDAR point clouds. LiDAR point clouds are not listed, since this use case was not addressed by the proposed ML-based PCC solutions. The same classification is used in the testing procedure proposed in the present document.

Table 1. Subset of G-PCC CTC point clouds. LiDAR is not represented.
[image:]

3.2 Proposed Set
The G-PCC CTC test set was successively narrowed-down, following the following steps:

1. Scant surface point clouds were removed, since this class was not addressed by any of the studied ML-based PCC solutions.

Table 2. Subset of G-PCC CTC point clouds. Scant surface point clouds removed.
[image:]
[image:]
2. Columns and colors indicate which and how point clouds were used for training and testing by ML-based solutions (adl-pcc, pcc_geo_v2 and pcgcv2). Color codes are detailed in the legend. All point clouds used by any of the proposals during training were removed. Table 3 (a) shows the remaining point clouds.
3. Since different versions of loot, soldier, redandblack and unicorn were used by adl-pcc during training, the 12-bit versions of these point clouds were also removed. The result is shown in Table 3 (b).

Table 3. (a) point clouds used in training were removed; (b) including their higher bit-depth versions.
[image:]
(a) (b)
4. The 10-bit precision solid longdress was kept in the test set. The 10-bit solid queen was included because of its synthetic nature.
5. The 11-bit solid basketball and dancer are similar in terms of density (class), geometry precision and number of points. Thus, just one of them was included in the test set. Dancer was arbitrarily chosen.
6. From the 12-bit examples, the dense house and the sparse statue_klimt were included.
7. The 14-bit dense landscape and 16-bit sparse stanford point clouds were selected only for future tests. As will be shown, 12-bit precision point clouds already presented some challenges. Higher bit-depth will most probably require retraining, which was not carried out in the current tests, or some additional pre- and post-processing step.
Table 4. Selected test set.
[image:]
In conclusion, the resulting test set is composed of 10, 11, 12, 14 and 16-bit point clouds, 3 solid, 2 dense, and 2 sparse, with the number of points ranging from 499,669 to 71,948,094.

4 Objective Performance Evaluation
Point clouds used in tests were distributed over three sets. Set 1, with 10-bit solid point clouds (longdress, loot, redandblack and soldier). This is the test set originally proposed by pcc_geo_cnn_v2 and pcgcv2 and can be considered a well-behaved test set. Set 1 will be considered of low-complexity. However, since loot, redandblack and soldier were used to train adl-pcc models, an expanded test set became necessary. As a result, Set 2, with 10, 11 and 12-bit dense and sparse point clouds (queen, dancer, staue_klimt and house_without_roof) is proposed. Queen and dancer can also be considered well-behaved cases, however, house_without_roof and statue_klimt start to pose some challenges due to their geometry precision and degree of sparseness. Consequently, Set 2 can be considered a medium-complexity set. Finally, Set 3, with 14 and 16-bit dense and sparse point clouds (landscape and stanford), which present the highest geometry precision among the selected point clouds in Section 3. Set 3 is a high-complexity test set. In our evaluations, only Set 1 and Set 2 were used. Set 3 can be included in further investigations.

4.1 MPEG Software

The following PCC-related MPEG softwares and respective releases were used in the tests.

4.1.1 G-PCC (TMC13v14.0)

G-PCC is used as anchor and part of pcgcv2. Fractional SR is applied to the point clouds compressed and reconstructed by G-PCC.

Software: http://mpegx.int-evry.fr/software/MPEG/PCC/TM/mpeg-pcc-tmc13
Commit: c3c9798a0f63970bd17ce191900ded478a8aa0f6

4.1.2 D1 and D2 PSNR (pc_error Release 0.13.5)

· Software: http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric
· Commit: 3b79aaed84df988d72851010b5c8288728b04d14

4.2 Tests with Set 1
This is the test set originally proposed by pcc_geo_cnn_v2 and pcgcv2. However, in adl-pcc, the point clouds loot, redandblack and soldier are also part of the training set. Because of that, the results may be biased towards adl-pcc. This is one of the reasons why Set 2 is also evaluated in Section 4.3. In addition, for Set 1, pcc_geo_cnn_v2, adl-ppc and pcgcv2 do not perform any pre- or post-processing (e.g. down/up-scaling). For pcgcv2 there is one relevant extra parameter, rho, that controls the number of output points. For test Set 1, rho = 1, making the number of output points equal to the number of input points. The other techniques, pcc_cnn_geo_v2, adl-pcc and Fractional SR do not have a similar mechanism. The general characteristics of Set 1 are shown in Table 5. Regarding Fractional SR, point clouds are decimated by G-PCC according to the CTC during lossy geometry coding and super-resolution is applied to the reconstructed point cloud. G-PCC lossy and lossless geometry coding performance are included as references. Table 5 summarizes the general characteristics of Set 1.

Table 5. General characteristics of test Set 1.
	ML-BASED POINT CLOUD COMPRESSION: SET 1

	Class
	Sequence
	Geometry precision [bits]
	№ input points

	solid
	longdress_vox10_1300
	10
	857966

	
	loot_vox10_1200
	10
	805285

	
	redandblack_vox10_1550
	10
	757691

	
	soldier_vox10_0690
	10
	1089091

Figures 4 (a) and b (b) show D1 and D2 PSNR plots for pcc_geo_cnn_v2, adl-pcc and pcgc-v2, as well as for G-PCC (TMC3-lossy) and Fractional SR (TMC13-lossy + SR).

[image:]
(a)
[image:]
(b)
Figure 4. D1 and D2 PSNR plots for Set 1.
4.3 Tests with Set 2

In the following results, pcgcv2 applies down-scaling to the input statue_klimt and house_without_roof point clouds and up-scaling to the respective output reconstructed point clouds (scaling_factor = 0.375), as illustrated in Figure 5. In addition, the value of rho is 4.0 and 1.0, for statue_klimt and house_without_roof, respectively. No geometry transformation is applied to queen and dancer (scaling_factor = 1, rho = 1). In the first set of plots, shown in Figure 6, pcc_geo_cnn_v2 and adl-pcc are not using any equivalent down- and up-scaling strategy for statue_klimt and house_without_roof. Original version of theses point clouds are directly input to the codec. Table 6 summarizes the general characteristics of Set 2.
Table 6. General characteristics of test Set 2.
	ML-based Point Cloud Compression: SET 2

	Class
	Sequence
	Geometry precision [bits]
	№ input points

	solid
	queen_0200
	10
	1000993

	solid
	dancer_vox11_00000001*
	11
	2592758

	sparse
	staue_klimt_vox12
	12
	499660

	dense
	house_without_roof_00057_vox12
	12
	4848745

* The assistance provided by Maurice Quach was greatly appreciated.

[image:]
Figure 5. Down-scaling of the original point cloud and up-scaling of the reconstructed point cloud.

[image:]
[image:]
Figure 6. D1 and D2 PSNR plots for Set 2: pcgcv2 codec is using down- and up-scaling. In addition a pcgcv2 parameter rho; pcc_geo_cnn_v2 and adl-pcc are not using a similar strategy.

It is important to note that directly coding sparse point clouds with larger precision often leads to two main issues:

1) The number of 3D blocks that needs to be coded will be very large, leading to much larger bitrates;
2) The 3D blocks will also be sparser, which makes it more difficult to achieve a good reconstruction quality.

As such, applying down-scaling to these point clouds before coding can mitigate these issues, and result in a better RD performance. New experiments were performed where adl-pcc also applied down-scaling before coding, and after decoding the point clouds were up-scaled back to the original precision. This approach will be referred to as “adl-pcc, dus” The house_without_roof_00057_vox12 and staue_klimt_vox12 point clouds were down-scaled to 11 and 10-bit precisions, respectively. After decoding, the point clouds were up-scaled to 12 bits. As the plots in Figure 7 show, there is a significant RD performance improvement over coding the point clouds in their original precision, yielding similar results as pcgcv2, which also uses a similar down- and up-sampling strategy. The pcc_geo_cnn_v2 codec did not apply an equivalent down- and up-scaling strategy for statue_klimt and house_without_roof. In this case, original point clouds are directly used as inputs.

[image:]
Figure 7. D1 and D2 PSNR plots for Set 2: adl-pcc and pcgcv2 are using down- and up-scaling; pcc_geo_cnn_v2 is not using down- and up-scaling.

Figure 8 shows a zoomed part of the same plots of Figure 7.

[image:]
Figure 8. Zoomed part of plots shown in Figure 7.

In Figure 9, it is possible to observe in detail the effect of down- and up-scaling in adl-pcc in D1 and D2 PSNR performance (adl-pcc vs. adl-pcc, dus). TMC13-lossy is plotted for reference.
[image:]
Figure 9. Effect of down- and up-scaling in adl-pcc.
The authors of pcc_geo_cnn_v2 did not suggest any down- and up-scaling procedure, thus this is a configuration that was not included in the experiments. However, it is likely that reducing the point cloud density/bit-depth before encoding and increasing it back after decoding would also benefit pcc_geo_cnn_v2.
Due to the sparseness and higher bit-depth of house_without_roof_00057_vox12 and staue_klimt_vox12, Fractional SR was not able to produce results due to technical limitations. However, if the point clouds get down-scaled after being encoded with G-PCC the Fractional SR technique is able to deal with these point clouds. After being super-resolved, point clouds are up-scaled to their original resolution. This setup, illustrated in Figure 10, will be referred to as “TMC13-lossy+SR, dus”. Results are shown in Figure 11, where rescaling was applied to adl-pcc, pcgcv2 and Fractional SR. It is important to highlight that even though pcc_geo_cnn_v2 is also partially represented in the plots, it is not performing down- and up-scaling.
[image:]
Figure 10. TMC13-lossy+SR, dus scheme.

[image:]
Figure 11. D1 and D2 PSNR plots for Set 2: adl-pcc, pcgcv2 and Fractional SR are using down- and up-scaling; pcc_geo_cnn_v2 is not using down- and up-scaling.

4.4 Tests with Set 3
Results obtained for Set 2 indicate that higher geometry precision associated with lower density represents a challenging scenario that probably requires a different coding strategy. Maybe simple down- and up-sampling steps are not sufficient. Training the models with different conditions may be required. The present document considers the evaluation of the codecs using test Set 3 as future investigation. Table 7 summarizes the general characteristics of Set 3.

Table 7. General characteristics of test Set 3.
	ML-based Point Cloud Compression: SET 2

	Class
	Sequence
	Geometry precision [bits]
	№ input points

	dense
	landscape_00014_vox14
	14
	71948094

	sparse
	stanford_area_4_vox16
	16
	43399204

5 [bookmark: _heading=h.6h0fpvas92zq]Visual Inspection
5.1 Test Set 1

From this test set, longdress was selected as a representative example. All point clouds in Set 1 are solid, 10-bit vozelixed, full-body point clouds, captured using the same technology. In addition, D1 and D2 PSNR behavior for all four point clouds present the same trend. Table 8 shows the rate distortion points and Figures 12 and 13 views of the output of the codecs.

Table 8. RD points selected for visual inspection: longdress_vox10_1300.

[image:]

The bold rows indicate which RD points were selected from each codec.
[image:][image:][image:]
(a) Uncompressed (b) tmc3 (c) adl-pcc

[image:][image:][image:]
(d) pcc_geo_cnn_v2 (e) pcgcv2 (f) Fractional SR
Figure 12. Visual inspection of codec output.
[image:]
(a) Uncompressed
[image:]
(b) tmc3
[image:]
(c) adl-pcc
[image:]
(d) pcc_geo_cnn_v2

[image:]
(e) pcgcv2
[image:]
(f) Fraction SR
[bookmark: _heading=h.sjvsecvnnv65]Figure 13. Zoomed part of point clouds shown in Figure 12.

One very pronounced effect that can be observed in adl-pcc and pcc_geo_cnn_v2 are holes in the region of the nose. The same artifacts are not present in pcgcv2 and Fractional SR.

5.2 Test Set 2
From Set 2, queen_0200 and staue_klimt_vox12 were chosen for visual inspection. The point cloud queen_0200 is a synthetic point cloud and staue_klimt_vox12 represent the most difficult case (12-bit geometry precision and reduced number of point: ~500k). Because pcc_geo_cnn_v2 does not use down- and -up-scaling, the rate-distortion points are not comparable to those of the other codecs. There the output of pcc_geo_cnn_v2 for staue_klimt_vox12 is not presented. Table 9 and 10 show rate distortion points and Figures 14 and 15 views of the output of the codecs.

Table 9. RD points selected for visual inspection: queen_0200.
[image:]

Figure 13 shows a zoomed part of queen_0200. Except for tmc3, differences are not easily identified.

[image:] [image:]
(a) Uncompressed (b) tmc3

[image:] [image:]
(b) adl-pcc (c) pcc_geo_cnn_v2
[image:] [image:]
(c) pcgcv2 (e) Fractional SR
Figure 14. Zoomed part of queen_0200.

Table 10. RD points selected for visual inspection: staue_klimt_vox12.
[image:]

[image:][image:]
(a) Uncompressed (b) tmc3
[image:][image:]
(d) adl-pcc (c) pcgcv2

[image:]
(e) Fractional SR
Figure 15. Zoomed part of statue_klimt_vox12.
One can notice that for adl-pcc and pcgcv2 (the AI-based approaches), there are multiple regions where holes a very visible. However, it seems that the original point cloud already presents such holes, but they can’t be noticed due to the sparsity of the point cloud. When reconstructed with the machine learning algorithms, regions with no holes become denser, contrasting with regions that originally were already empty. Figure 16 show an example.

[image:] [image:]
(a) Uncompressed (b) adl-pcc

[image:]
(c) pcgcv2
Figure 16. Zoomed part of statue_klimt_vox12. Presence of artifacts.

6 Complexity Evaluation
The use of PyTorch as an open-source machine learning framework was recommended at the 5th WG7 MPEG meeting [2], thus, only PyTorch will be taken into consideration in the current section. The synthesis here presented constitutes an initial discussion on potential complexity evaluation tools and must further discussed and enhanced.
6.1 Built-in Evaluation Tools
There are several core built-in functions that can be used for performance evaluation in terms of runtime. Some are detailed in the next sections.
6.1.1 Python Modules
6.1.1.1 time
Python time module [7], [8] provides four different clocks:
· 'time': time.time()
· 'monotonic': time.monotonic()
· 'perf_counter': time.perf_counter()
· 'process_time': time.process_time()

To get more information about a specific clock, one can use the time.get_clock_info() function, as exemplified in Table 11.

Table 11. Characteristics of each clock on 64-bit Windows 10. Adjustable: the clock can be changed; implementation: the underlying C function used to get the clock value; monotonic: clock goes only forward; resolution: time resolution of the clock in fractional seconds.
	
	implementation
	monotonic
	adjustable
	resolution

	'time':
	GetSystemTimeAsFileTime()
	False
	True
	0.015625

	'monotonic'
	GetTickCount64()
	True
	False
	0.015625

	'perf_counter'
	QueryPerformanceCounter()
	True
	False
	1e-07

	'process_time'
	GetProcessTimes()
	True
	False
	1e-07

Absolute time
Time elapsed since a defined origin of times.
· time.time()
Return the time in seconds since the “epoch”, which is the point where the time starts. On Windows and most Unix systems, the epoch is January 1, 1970, 00:00:00 (UTC). It can result in unexpected behavior due to its adjustable characteristic. The function time.gmtime(0) returns the epoch on a specific platform.
Relative time
Only the difference between the results of consecutive calls is valid. The reference time is undefined.
· time.monotonic()
Return an always increasing time (monotonic clock) in fractional seconds. Represents a safer alternative to time.time().
· time.perf_counter()
Return the time in fractional seconds of a performance counter, a clock with the highest available resolution. Includes time elapsed during sleep.
· time.process_time()
Return the sum of the system and user CPU time of the current process. It does not include time elapsed during sleep.

Example (time.time()):

import time

def testFunc(x):
	return 2*x

start = time.time ()
y = testFunc(x)
end = time. time ()
elapsed_time = end – start

The same example can be rewritten substituting time.time() for time.monotonic(), time.perf_counter() or time.process_time().

6.1.1.2 timeit
Provides a simple way to evaluate the performance of small parts of code [9].
· timeit.Timer()
Run the code multiples times and return the total runtime in fractions of seconds. Uses time.perf_counter() as the default timer.

Example:
	import timeit

def testFunc(x):
	return 2*x

number_of_runs = 100
x = 10
t = timeit.Timer(
 stmt='testFunc(x)',
 setup='from __main__ import 'testFunc,
 globals={'x': x})
print(t.timeit(number_of_runs))

6.1.2 PyTorch Module
6.1.2.1 torch.utils.benchmark
This benchmark module is similar to the timeit module [10].
torch.utils.benchmark.Timer()
Uses timeit.Timer() with some key differences: it returns the time per run instead of the total runtime for all runs; it is processed in a single thread. To make the results comparable to timeit.Timer(), one can run torch.utils.benchmark.Timer() with all available threads; when bechmarking on the GPU, timeit.Timer() may need to do a warmup while torch.utils.benchmark.Timer() already takes care of this [11]. Benchmarking on CPU and CUDA are available.

Example:
	import torch.utils.benchmark as benchmark

def testFunc(x):
	return 2*x

number_of_runs = 100
x = 10
num_threads = torch.get_num_threads()
t = benchmark.Timer(
 stmt='testFunc(x)',
 setup='from __main__ import 'testFunc,
 num_threads=num_threads,
 globals={'x': x})
print(t.timeit(number_of_runs))

6.1.2.2 torch.profiler
The Torch Profiler Is a tool that provides metrics that helps to evaluate training and inference performance [12]. To exemplify one of its possible usages, a version of the inception-residual network (IRN) used by pcgcv2 was re-implemented using torch.nn.Conv3d() instead of the correspondent MinkowskiEngine’s MinkowskiConvolution(), as listed in Table 12. Profiling is performed using the profile modules of torch.profiler, listed in Table 13. Results are shown in Figure 17.

Table 12. Reimplementation of Inception-residual Network using torch.nn.Conv3d().
	Inception-residual Network

	import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.profiler import profile, record_function, ProfilerActivity

class InceptionResNet(nn.Module):
 def __init__(self, channels):
 super().__init__()
 self.conv0_0 = nn.Conv3d(
 in_channels=channels,
 out_channels=channels // 4,
 kernel_size=3,
 stride=1,
 padding='same',
 padding_mode='zeros',
 bias=True)
 self.conv0_1 = nn.Conv3d(
 in_channels=channels // 4,
 out_channels=channels // 2,
 kernel_size=3,
 stride=1,
 padding='same',
 padding_mode='zeros',
 bias=True)
 self.conv1_0 = nn.Conv3d(
 in_channels=channels,
 out_channels=channels // 4,
 kernel_size=1,
 stride=1,
 padding='same',
 padding_mode='zeros',
 bias=True)
 self.conv1_1 = nn.Conv3d(
 in_channels=channels // 4,
 out_channels=channels // 4,
 kernel_size=3,
 stride=1,
 padding='same',
 padding_mode='zeros',
 bias=True)
 self.conv1_2 = nn.Conv3d(
 in_channels=channels // 4,
 out_channels=channels // 2,
 kernel_size=1,
 stride=1,
 padding='same',
 padding_mode='zeros',
 bias=True)

 def forward(self, x):
 out0 = self.conv0_1(F.relu(self.conv0_0(x)))
 out1 = self.conv1_2(F.relu(self.conv1_1(F.relu(self.conv1_0(x)))))
 out = torch.cat((out0, out1), 1) + x

 return out

Table 13. Profiling the model listed in Table 12.
	Profiling

	if __name__ == '__main__':

 model = InceptionResNet(32)
 input = torch.randn(1, 32, 64, 64, 64)

 with profile(activities=[ProfilerActivity.CPU],
 record_shapes=True,
 profile_memory=True) as prof:
 with record_function("model_inference"):
 model(input)

 prof.export_chrome_trace("trace.json")
 print(prof.key_averages().table(sort_by="cpu_memory_usage"))

[image:]
Figure 17. Output of PyTorch profile tool.

Results can also be outputted as a .json trace file and opened in Chrome trace viewer (chrome://tracing).

6.2 Complexity Evaluation of pcgcv2
To answer the question about how machine-learning approaches compare with G-PCC in terms of runtime, a preliminary runtime complexity of pcgcv2 is presented. Since the use of PyTorch, was recommended at the 5th WG7 MPEG meeting, pcgcv2 is used here as a study case because of its use of the PyrTorch framework. The pcc_geo_cnn_v2 and adl-pcc solutions are implemented using the TensorFlow 1.X framework. Fractional super-resolution is implemented in Octave and is not an AI-based method. Only inference time.time() runtimes for CPU and GPU are here reported and the test set used in the experiments is a union of Sets 1 and 2 described in Section 4, except for house_without_roof, which could not be encoded in the GPU due to memory restrictions. Table 14 shows the test set.

Table 14. General characteristics of test set (Sets 1 and 2 of Section 4).
	ML-BASED POINT CLOUD COMPRESSION: SET 1 AND SET2

	Class
	Sequence
	Geometry precision [bits]
	№ input points

	solid
	longdress_vox10_1300
	10
	857966

	
	loot_vox10_1200
	10
	805285

	
	redandblack_vox10_1550
	10
	757691

	
	soldier_vox10_0690
	10
	1089091

	
	queen_0200
	10
	1000993

	
	dancer_vox11_00000001
	11
	2592758

	dense
	house_without_roof_00057_vox12
	12
	4848745

	sparse
	staue_klimt_vox12
	12
	499660

The trained models provided by the pcgcv2 proponents were used, and detailed network information for the proposed models in inference stage presented in in m57453 [2] are reproduced in Table 15.

Table 15. Network information for the proposed model in inference stage
	Network Information in Inference Stage

	Framework:
	PyTorch v1.8; MinkowskiEngine v0.5; torchac v0.9.3; tmc13 v14.0

	Total Parameter Number
	2.81M

	Parameter Precision (Bits)
	32 (F)

	Memory Parameter (MB)
	10.89MB

	Total Conv. Layers
	207

6.2.1 Inference Complexity
6.2.1.1 Inference Time (CPU and GPU)
Only inference runtimes for CPU (Intel Core i9-9900KF CPU @ 3.60GHz, 8 Cores) and GPU (GeForce RTX 2080 Ti, 11GB) are reported using time.time(). Table 16 shows the results. The reported runtimes represent average values for the whole test set shown in Table 14. CTC rate points from r01 to r06 were used for G-PCC. Models trained with target bitrates of 0.025, 0.05, 0.1, 0.15. 0.2, 0.25 and 0.3 were used for pcgcv2. One can notice that the pcgcv2 decoder is slower than its encoder in terms of CPU (around 3.7 times) and GPU runtimes (around root 2.3 times). G-PCC is much faster than pcgcv2 in terms of CPU encoding and decoding runtimes (around 3.7 and 37 times faster, respectively). pcgcv2 encoder is much faster than G-PCC in terms of GPU runtime (around 10 times faster). However, one can notice that G-PCC is still very efficient in terms of decoding runtime. The performance is lower than pcgcv2 running in the GPU, but the difference is not as big as in the other cases (only around 1.35 times).
Table 16. CPU and GPU runtimes in inference stage.
[image:]

To further investigate inference times of pcgcv2, CPU runtimes of each module was calculated for longdress at the lowest target bitrate (0.025 bbp). The results are shown in Figure 18. For different bitrates, runtimes are approximately the same, thus only this illustrative example is here reported.

[image:]

[image:] [image:]
Figure 18. Detailed runtimes of pcgcv2.

One can notice that at the encoder runtimes decrease at each layer from the input in the direction of the entropy model. At the decoder, the inverse is observed. GPU runtimes can also be computed, but in this case, since expected runtimes are much smaller, the use of time.perf_counter() would be more appropriate because of its increased precision. In addition, training complexity can be included.

7 Conclusions
7.1 General
The investigation performed during the elaboration of this document permitted the identification of relevant classes of solutions, point clouds and spasticity levels, according to the description below. Some are already known, but here their importance is being highlighted.
A. Classes of Solutions:
· G-PCC
· ML-PCC + G-PCC
· pcgcv2
· End-to-end ML-PCC
· adl-pcc
· pcc_geo_cnn_v2
· G-PCC + post-processing
· Fractional SR
B. Classes of point clouds:
· Surface points clouds
· LiDAR point clouds
C. Classes of Sparsity
· Surface point clouds
· Solid
· Dense
· Sparse
· Scant
· LiDAR point clouds
· Automotive-frame
· Automotive-fused
D. Geometry bit-depths
· 10, 11, 12, 13, 14, 15, 16 and 20-bit geometry precision.
E. Pre- and post-processing
· Down- and up-sampling applied to 12-bit point clouds (adl-pcc and pcgcv2, and Fractional SR).
In the evaluations reported in the present document the following classes were not addressed and may constitute investigations for future work:
· Classes of point clouds/sparsity:
· Surface point clouds
· Scant
· LiDAR point clouds
· Automotive-frame and -fused
· Geometry bit-depths
· 13, 14, 15, 16 and 20-bit precision
· Pre- and post-processing
· No down- and up-sampling applied
· pcc_geo_cnn_v2

7.2 Rate-distortion Performance
Besides that, some relevant observations are:
· For 10 and 11-bit solid point clouds, Fractional SR seems to represent a simpler solution.
· For 10 and 11-bit solid point clouds, pcgcv2 seems to offer advantages over the other techniques in terms of D1 and D2 PSNR metrics.
· Fractional SR implementation could not directly process 12-bit dense and sparse point clouds. Down-scaling was necessary.
· pcgcv2 presents a parameter, rho, that allows for adjusting the number of output points and a scaling factor that allows for down- and up-scaling of the point clouds.
· adl-pcc performs down- and up-scaling through the specification of a target geometry precision.
· For 12-bit point clouds, down- and -up scaling improved the performance of adl-pcc and pcgcv2.
· In general, the increased number or output points provided by AI-based or SR methods tends to enable better D1 and D2 PSNR.
7.3 Visual inspection
For the imposed test conditions:
· G-PCC reconstructed point clouds are sparser.
· In adl-pcc and pcc_geo_cnn_v2 (which are block-based approaches) the presence of holes was observed. The same effect was not noticed in in pcgcv2 and Fractional SR.
· Results indicate that for sparse point clouds with non-uniform densities and higher resolution, adl-pcc and pcgcv2 tend to highlight the density differences introducing/highlighting previously masked holes, as shown in Figure 15 for statue_klimt.
7.4 Complexity
Different performance evaluation tools were presented:
· time, timeit, torch.utils.benchmark and torch.profiler.
pcgcv2 was evaluated and compared with G-PCC:
· G-PCC is much faster than pcgcv2 in terms of CPU encoding and decoding runtimes.
· pcgcv2 encoder is much faster than G-PCC in terms of GPU. However, G-PCC is still very efficient in terms of decoding runtime. The performance is lower than pcgcv2 running in the GPU, but the difference is not as big as in the other.
· [bookmark: _Hlk88041922]pcgcv2 decoder is much slower than pcgcv2 encoder in terms of CPU.
7.5 Additional comments
The following questions were also raised by the collaborators but are not the focus of the present activity. They should be addressed in the specific documents/activities that are dealing with Guideline, Datasets and Metrics and will be removed from future versions of this “Performance Analysis of Currently AI-based Available Solutions for PCC” document.
· Training distortion metric:
· Focal Loss, Binary Cross Entropy (BCE) Loss etc.
Comment: This is part of the codec design and must be properly described. A detailed description of the codec is recommended in the document “Guidelines for conducting AI exploration experiments for PCC” (w21005).
· Performance metrics:
· Adding more appropriate metrics for geometry and attributes is suggested.
· Subjective evaluation is crucial.
Comment: Should be addressed in “EE 0.6 on Evaluating Alternative Metrics for Point Cloud Coding”. The document “Guidelines for conducting AI exploration experiments for PCC” (w21005) provides more information about this topic.
· Adaptability
· How is it achieved?
Comment: This is part of the codec design and must be properly described. A Detailed description of the codec is recommended in the document “Guidelines for conducting AI exploration experiments for PCC” (w21005).
· Down- and up-scaling (pre- and post-processing)
· Open question: normative or not? Two options:
1. Probably non-normative but fixed to enable comparison between proposals.
2. Not fixed and part of the codec.
Comment: Should be addressed in the “Guidelines for conducting AI exploration experiments for PCC.”
· Database
· For surface point clouds.
· For LiDAR point Clouds.
Comment: This is being addressed in the “Preliminary data set collection for AI experiments” (w 21007).

8 Participants
	Contact
	Affiliation
	Email
	Role

	Alexandre Zaghetto
	Sony
	alexandre.zaghetto@sony.com
	Coordinator

	Andre Guarda
	IST
	andre.guarda@lx.it.pt
	Collaborator

	Jianqiang Wang
	Nanjing University
	wangjq@smail.nju.edu.cn
	Collaborator

	Jiahao Pang
	IDC
	jiahao.pang@interdigital.com
	Collaborator

	Vladyslav Zakharchenko
	OPPO
	vladyslav.zakharchenko@oppo.com
	collaborator

9 References
[1] “Discussion on Point Cloud Geometry Compression Using Machine Learning,” ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m57301, Online, July 2021.
[2] “DL-based Point Cloud Geometry Coding Software Availability,” ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m57556, Online, July 2021.
[3] “A Geometry Compression Framework for AI-based PCC via Sparse Convolution,” ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m57453, Online, July 2021.
[4] Borges, Tomás; Garcia, Diogo; de Queiroz, Ricardo (2021): Fractional Super-Resolution of Voxelized Point Clouds. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.15032052.v1
[5] “Common Test Conditions for G-PCC,” ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document w20358, Online, May 2020.	
[6] “G-PCC EE13.46 review of v11 attribute coding,” ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m55485, Online, October 2020.
[7] The Python Standard Library, time — Time access and conversions, accessed 16 November 2021, https://docs.python.org/3/library/time.html#time.time
[8] PEP 418 -- Add monotonic time, performance counter, and process time functions, accessed 11/22/2021, https://www.python.org/dev/peps/pep-0418/
[9] timeit - Measure execution time of small code snippets, accessed 11/22/2021, https://docs.python.org/3/library/timeit.html
[10] Pytorch Benchmark Utils, accessed 11/22/2021, https://pytorch.org/docs/stable/benchmark_utils.html
[11] PyTorch Benchmark, accessed 11/22/2021 https://pytorch.org/tutorials/recipes/recipes/benchmark.html
[12] PyTorch Profiler, accessed 17 November 2021, https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

10 [bookmark: _heading=h.494yju79l4pa]ANNEX (Further Reading)

Nguyen, D., Quach, M., Valenzise, G., & Duhamel, P. (2021). Multiscale deep context modeling for lossless point cloud geometry compression. ArXiv.

Yan, W., Shao, Y., Liu, S., Li, T.H., Li, Z., & Li, G. (2019). Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds. ArXiv.

Huang, T., & Liu, Y. (2019). 3D Point Cloud Geometry Compression on Deep Learning. ACM MM.

Wen, X., Wang, X., Hou, J., et.al. (2020). Lossy Geometry Compression Of 3d Point Cloud Data Via An Adaptive Octree-Guided Network. 2020 IEEE IICME.

Wiesmann, L., Milioto, A., Chen, X., Stachniss, C., & Behley, J. (2021). Deep Compression for Dense Point Cloud Maps. IEEE RA-L.

Gao, L., Fan, T., Wang, J., Xu, Y., Sun, J., Ma,. Z. (2021) Point Cloud Geometry Compression via Neural Graph Sampling. IEEE ICIP.

Qi, C., Yi, L., Su, H., & Guibas, L. (2017). PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. NIPS.

Huang, L., Wang, S., Wong, K., Liu, J., & Urtasun, R. (2020). OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression. IEEE/CVF CVPR.

Biswas, S., Liu, J., Wong, K., Wang, S., & Urtasun, R. (2020). MuSCLE: Multi Sweep Compression of LiDAR using Deep Entropy Models. NIPS.

Que, Z., Lu, G., & Xu, D. (2021). VoxelContext-Net: An Octree based Framework for Point Cloud Compression. CVPR.

MPEG, TMC13 [Online]. Available: https://github.com/MPEGGroup/mpeg-pcc-tmc13
A. X. Chang, T. Funkhouse, et.al., "ShapeNet: An Information-Rich 3D Model Repository," in ICCV, 2017.

Eugene,E, Bob, H., Taos, M.,et.al., 8i Voxelized Full Bodies - A Voxelized Point Cloud Dataset. MPEG m38673/M72012.

A. F. R. Guarda, N. M. M. Rodrigues and F. Pereira, “Adaptive Deep Learning-based Point Cloud Geometry Coding,” in IEEE Journal on Selected Topics in Signal Processing (J-STSP), vol. 15, no. 2, pp. 415–430, Italy, Feb. 2021. doi: 10.1109/JSTSP.2020.3047520.

A. F. R. Guarda, N. M. M. Rodrigues and F. Pereira, “Deep Learning-Based Point Cloud Geometry Coding: RD Control Through Implicit and Explicit Quantization,” in IEEE International Conference on Multimedia & Expo Workshops (ICMEW), London, UK, Jul. 2020. doi: 10.1109/ICMEW46912.2020.9106022.

L. Cui, R. Mekuria, M. Preda and E. S. Jang, “Point-Cloud Compression: Moving Picture Experts Group's New Standard in 2020,” in IEEE Consumer Electronics Magazine, vol. 8, no. 4, pp. 17-21, Jul. 2019.

J. Ballé, D. Minnen, S. Singh, S. J. Hwang and N. Johnston, “Variational Image Compression with a Scale Hyperprior,” in International Conference on Learning Representations (ICLR’2018), Vancouver, Canada, Apr. 2018.

T. Lin, P. Goyal, R. Girshick, K. He and Piotr Dollár, “Focal Loss for Dense Object Detection,” in IEEE International Conference on Computer Vision (ICCV’2017), Venice, Italy, Oct. 2017.
“JPEG Pleno Point Cloud Coding Common Test Conditions v3.3,” in ISO/IEC JTC1/SC29/WG1 Document N88044, Online, Jul. 2020.
“Final Call for Evidence on JPEG Pleno Point Cloud Coding,” in ISO/IEC JTC1/SC29/WG1 Document N88014, Online, Jul. 2020.
1
image1.jpg

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

