[image:] ISO/IEC JTC 1/SC 29/WG 7 N0246

ISO/IEC JTC 1/SC 29/WG 7
MPEG 3D Graphics Coding
Convenorship: AFNOR (France)

Document type:	Output Document

Title:	3D graphics renderer for the CfP on dynamic mesh compression

Status:	Approved

Date of document:	2021-12-01

Source:	ISO/IEC JTC 1/SC 29/WG 7

Expected action:	None

Action due date:	None

No. of pages:	8 (with cover page)

Email of Convenor:	marius.preda @ imt . fr

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg7

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7 MPEG 3D GRAPHICS CODING

ISO/IEC JTC 1/SC 29/WG 7 N 0246
October 2021, Virtual

	Title
	3D graphics renderer for the CfP on dynamic mesh compression

	Source
	WG 7, MPEG 3D Graphics Coding

	Status
	Approved

	Serial Number
	21026

Abstract

In this document, we present the 3D graphics renderer that will be used to perform the subjective evaluation of the submissions for the MPEG/3DG/WG7 CFP on dynamic mesh compression.

1. Mpeg-pcc-renderer	

The subjective evaluations of the MPEG/3DG/WG7 CFP on dynamic point cloud compression and the verification tests of the V3C/V-PCC point cloud compression standard have been realized with the mpeg-pcc-renderer reference software and this software will be used to evaluate the subjective quality of the submissions for the MPEG/3DG/WG7 CFP on dynamic mesh compression.

This software is available in the MPEG git repository:

http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-renderer

The master branch contains the latest version of this software (tag. V6.3) and will be used for subjective evaluation and its main features will be presented below.

Clone and build

The software could be cloned from the MPEG git repository with the following commands:

git clone http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-renderer
cd mpeg-pcc-renderer
./build.sh
This software uses the following dependencies:
· OpenGL
· GLFW
· nanoflann
· Open Asset Import Library (assimp)
· Stb_image
· oneAPI Threading Building Blocks (TBB)
· OpenGL Mathematics(GLM)
· program-options-lite
The required sub-modules are cloned from the CMakeFile by the building command lines and stored in the ./external/ sub-folder.
On Linux and MacOS, the ASSIMP and TBB libraries must be installed with the next command lines:
apt/brew install libassimp-dev libtbb-dev
For MacOS, the libjpeg and libpng libraries must also be install with command line:
brew install libpng jpeg libomp
Usages

The 3D graphic renderer can be used to load and to display a sequence of 3D models of various formats:
· point cloud (.ply objects)
· 3D mesh (.obj objects).

Two operating modes are possible. The renderer can be used interactively to load 3D sequences, view them, and turn around the models. This mode can be used to record the points of view positions and the camera paths.

The non-interactive mode, that can be executed off screen or not, can be used to create a video of the rendered scene based on a camera path or not.

2. Creation of the camera path

1
 Loading the scene

The sequences can be charged with the file name or directly with the name of the folder containing the objects:

./bin/Linux/Release/PccAppRenderer \
 -d ./longdress/\
 -n 0

./bin/Linux/Release/PccAppRenderer \
 -f ./longdress/longdress_fr%04d.obj \
 -n 6 \
 -i 1051

The object sequence is then loaded into the software and displayed in the graphical user interface.[image: A person in a dress

Description automatically generated with low confidence]

Camera path recording

To record a camera path, the keyboard shortcuts must be used. The keyboard keys to be used are:
u: to start and stop the camera path recording.
i: to add the current position/orientation to the camera path.

To record the camera path, the user needs to press the ‘u’ key to start recording mode. After that, the user must change the position of the camera and press the ‘i’ or ‘k’ keys for each position that needs to be added. The ‘k’ key adds a fixed position in the camera path and the ‘i’ key adds a non-fixed position. When all the positions have been recorded , the ‘u’ key must be pressed to stop the recording and save the camera path file.

The alignment keyboard shortcuts could be used to facilitate the selection of the positions that must be record. The following keyboard shortcuts can be used:
 - ‘1’-‘2’: Faces of the bounding box (+Ctrl to zoom).
 - ‘3’-‘4’: Horizontal octagon vertices (+Ctrl to zoom).
 - ‘5’-‘6’: Horizontal rotation.
 - ‘7’-‘8’: +/- auto-rotate speed.

The rendering can be made in orthographic or in perspective projection. This mode could be changed with the input parameter: --orthographic=[0|1] or with the ‘o’ keyboard shortcut. This parameter is saved in the camera path for each point, and it allows to change the used projection during the camera path and in the created videos.

The camera path stores :
· The index of the point,
· The position of the camera,
· The center of view of the camera,
· The up vector of the camera,
· The orthographic/perspective projection flag.

The next lines show an example of these files:

#Index PosX PosY PosZ ViewX ViewY ViewZ UpX UpY UpZ Orthographic FixedPosition
 0 1911.66 1233.42 2302.11 281.53 510.96 200.57 0.00 0.94 -0.32 0 0
 30 2770.87 1252.47 -720.89 281.53 510.96 200.57 -0.26 0.96 0.06 0 0
 60 441.39 1437.60 -2390.09 281.53 510.96 200.57 -0.21 0.92 0.31 0 0
 90 -1887.61 1573.77 -1126.44 281.53 510.96 200.57 0.28 0.91 0.27 0 0
119 -1969.98 1680.21 1277.27 281.53 510.96 200.57 0.42 0.90 -0.09 0 0

The indexes of the camera path define the indexes of the frames that will be generated at the corresponding positions. The positions of the intermediate frames between the defined positions are interpolated according to the frame index and the positions of the camera.

For example, the following camera path is composed of three steps:
· 3 seconds of orthographic rendering from a fixed position at the left of the object.
· 3 seconds of orthographic rendering from a fixed position at the front of the object.
· 4 seconds of perspective rendering with a slow traveling motion from far front position to near front position.

#Index PosX PosY PosZ ViewX ViewY ViewZ UpX UpY UpZ Orthographic FixedPosition
 0 5876.48 456.24 34.92 -130.38 456.24 34.92 0 1 0 1 1
 90 -130.38 456.24 -5971.94 -130.38 456.24 34.92 0 1 0 1 1
 180 -130.38 456.24 -5971.94 -130.38 456.24 34.92 0 1 0 0 0
 299 -130.38 1081.96 -1967.36 -130.38 1081.96 34.92 0 1 0 0 0

During the recording of a camera path, each inserted point is generated with the index increased of one second. The user can press the “i” or ‘k’ keys several times to increase this value without changing position to create the desired camera path.

Preloaded camera paths

To facilitate the usage of the camera paths, preloaded camera path mode has been added in the mpeg renderer.

This mode could be used by adding the input parameter: –cameraPathIndex=index, and automatically build a 300 frames camera path based on the bounding box of the sequences.

For the CFP sequences, the following parameters could be used to create the camera paths corresponding to the orientation of the sequences and to the motions:

	Sequences
	Camera path index

	longdress
	10

	soldier
	10

	mitch
	10

	thomas
	10

	levi
	10

	basketball_player
	11

	dancer
	12

	football
	13

The following figure shows examples of video sequences generated with the previous settings.

 [image:] [image:] [image:] [image:]

 [image:] [image:] [image:] [image:]

Display and play a camera path

When a camera path is recorded and loaded, the positions and the orientations of the camera could be drawn in the GUI by press the ‘p’ key.

The points of the camera path are interpolated between the defined points. Two modes of interpolation could be used:
· Direct: the positions of the intermediate points are calculated by a regular subdivision of each segment of the camera path.
· B-spline: the positions of the intermediate points are calculated by a b-spline subdivision of the camera path.

The next figure shows an example of these two types of interpolations.
[image: Calendar

Description automatically generated with low confidence]

[image: A picture containing text, display, electronics, screenshot

Description automatically generated]

The ‘g’ keyboard shortcut could be used to play the camera path. In this mode at each frame, the position and the orientation of the camera are updated with the interpolated positions

Create video

The camera path could be used to generate a video. The next command line shows an example of this functionality:

./bin/Windows/Release/PccAppRenderer.exe \
 -f ../longdress_fr%04d.obj \
 -n 6
 -i 1051 \
 --camera=cfg/plane.txt\
 --spline=1 \
 --RgbFile=test

The generated videos are RGB48.
To facilitate the creation of the rendered video and the usage of these sequences, the two following scripts have been updated:
· ./scripts/renderer.sh
· ./scripts/convert_video.sh

The first script starts the rendering software in a video recording mode that saves the rendered screen to a raw video file.

The second script converts the created raw videos into more usable video formats:
· 0: rgb 16bits i444
· 1: yuv 10bits p420
· 2: HEVC/X265 Lossless
· 3: HEVC/X265 QP18
· 4: Graphics interchange format (GIF)
· 5: zipped yuv 10bits p420

The format of the generated videos could be configured with the script parameter: --videotype=[0;5].

This second script is automatically executed by the renderer.sh script to convert the created videos. The default value of the renderer software and of these scripts have been fixed in alignment with the conditions defined in the mesh CFP (background color, floor color,…).

The ./scripts/renderer.sh script can be used to generate and to convert the rendered video:

$./scripts/renderer.sh: Render PLY/OBJ sequences based on camera path and create video

 Usage:
 ./mpeg-pcc-renderer/scripts/renderer.sh -i <INPUT> [-o <OUTPUT>] [-h]

 Parameters:
 -h|--help : help message.
 -i|--input=* : input dir
 -o|--output=* : suffix of the name of the created video
 -w|--width=* : width of the created video
 -h|--height=* : height of the created video
 -r|--rotation=* : rotation
 -f|--frame=* : frame number
 -v|--viewpoint=* : viewpoint file
 -x|--camera=* : camera path file
 -t|--camerapathindex=*: camera path index
 -t|--videotype=* : video type:
 - 0: rgb 16bits
 - 1: yuv 10bits
 - 2: HEVC/X265 Lossless
 - 3: HEVC/X265 QP18
 - 4: Graphics interchange format (GIF)
 - 5: zipped yuv 10bits
 -pb|--playbackward=* : playbackward
 --floor=* : draw floor box.
 --spline=* : interpolate camera path by b-splines.
 --force : recreate video if file already exists.

 Examples:
 - ./mpeg-pcc-renderer/scripts/renderer.sh -i input.rgb
 - ./mpeg-pcc-renderer/scripts/renderer.sh -i input.rgb -o output.yuv

ERROR: input dir must be set

For example, the following command line reads the 300 first objects of the longdress sequence, plays the sequence by moving the camera following the camera path defined in the ./cfg/circle.txt file and creates a yuv420p10le video: video_1920x1080_10bit_p420.yuv:

$./scripts/renderer.sh \
 -i ./londress/ \
 -f 300 \
 -x ./cfg/circle.txt \
 -o video \
 --videotype=1

The next figure shows an example of the created videos:

[image:]

Conclusion

This document has presented the MPEG-3DG-Renderer and functionalities that will be used to create the videos of the 3D dynamic mesh models to evaluate subjectively the quality of the submissions for the MPEG/3DG/WG7 CFP on dynamic mesh compression.

2

image1.jpeg

image2.png

image3.gif

image4.gif

image5.gif

image6.gif

image7.gif

image8.gif

image9.gif

image10.gif

image11.png

image12.png

image13.gif

