
[image:]ISO/IEC JTC 1/SC 29/WG 03 N0446

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document

Title:	Procedures for standard development and software of ISO/IEC 23090-13

Status:	Approved

Date of document:	2022-01-21

Source:	ISO/IEC JTC 1/SC 29/WG 03

No. of pages:	11 (with cover page)

Email of Convenor:	young.L @ samsung . com

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 03 MPEG SYSTEMS
ISO/IEC JTC 1/SC 29/WG 03 N0446
January 20222, Virtual
	Title
	Procedures for standard development and software of ISO/IEC 23090-13

	Source
	WG 03, MPEG Systems

	Status
	Approved

	Serial Number
	21162

[bookmark: _Toc93670716]Scope
This document provides information to support the development of ISO/IEC 23090-13.
Contents
1	Scope	1
2	Reference software	1
2.1	The libvdi library	2
2.1.1	Architecture	2
2.1.2	Implementation	3
2.1.3	Logistics	3
2.2	Sample software	3
2.2.1	Operations of input formatting	3
2.2.2	Logistics	3
3	Conformance software	3
3.1	Operations of input formatting	4
3.2	Logistics	4
4	Test vectors	4
4.1	Elementary streams constraints	4
4.2	Logistics	4
5	Standardisation process	4
6	Summary logistics	5

[bookmark: _Toc93670717]Reference software
[bookmark: _Toc93670718]The libvdi library
[bookmark: _Toc93670719]Architecture
As a reminder, the scope of VDI is as follows:

Key
	MDS
		media stream
	
	

	ES
		elementary stream
	
	

	MTS
		metadata stream
	
	

	DS
		decoded sequence
	
	

NOTE	Multiple elementary streams that are output of the input formatting function may be fed to a single video decoder instance.
Figure 1 - Video Decoding Engine and interfaces
The reference software comprises several libraries based on this diagram. Each module inside in the Video Decoding Engine translates to a sub library, i.e.:
· Input formatting libbeam
· Lime locking libtiming
· Output formatting liboutput

In addition, since many ongoing projects in the video standardisation space is developed in the C++ language, this language is used to write the reference libraries as depicted in the figure below:
[image: Graphical user interface, text, application, chat or text message

Description automatically generated]
Figure 2 - VDI reference library organization
For each sub library, the functions defined in the normative specification are implemented in the library with template parameters to accommodate different underlying types.
[bookmark: _Toc93670720]Implementation
In addition to use the C++ language, the feature of C++ 20 called concepts are used. Concepts allow to define requirement on template types. This allows the libvdi to define once the important types and their requirements and then application can use any underlying library as long as the constraint on the types are fulfilled.
For instance, one can define a template type ElementaryStream without providing a concrete implementation but with providing constraints on the implementation of the concrete type that will be used by the application using the libvdi library. For instance, an application could use the VTM, ETM or HM libraries in conjunction with the libBEAM where each may have a different class defining access units.
Note that C++ 20 concepts is a new feature of the C++ language with support in the latest compiling tooling Error! Reference source not found.:

· gcc 10
· Visual Studio 2019
· Clang 10

The decision of using concepts may be revised at a later stage if support in compiler is not broad enough to allow the timely development of the standard. One possible alternative would be to define the template types without the constraints.
[bookmark: _Toc93670721]Logistics
	Name
	Language
	Description
	Hosting

	libBEAM
	C++
	Reference libraries
	https://gitlab.com/mpeg-i/video-decoding-interface/libbeam

The other libraries are not yet created.
[bookmark: _Toc93670722]Sample software
[bookmark: _Toc93670723]Operations of input formatting
A command-line tool performing the normative operations is developed. The implementation of the operation itself being normative.
The goal of implementing this software are the following:
· Verify the ability to implement a proposed operation
· Identify the normative constraints on the input elementary streams to execute the operation
· Assess the complexity of an operation

[bookmark: _Toc93670724]Logistics
	Name
	Language
	Description
	Hosting

	BEAMOp
	C++
	Implements input formatting operations on elementary streams
	https://gitlab.com/mpeg-i/video-decoding-interface/beamop

[bookmark: _Toc93670725]Conformance software
[bookmark: _Toc93670726]Operations of input formatting
A project for validating the constrains on the input and output elementary streams is also developed. This way, external implementations of the specifications can be validated but also the sample software can be verified to behave accordingly to the specification.
[bookmark: _Toc93670727]Logistics

	Name
	Language
	Description
	Hosting

	BEAMConf
	C++
	Validate conformance of input and output elementary streams passed on or output by the input formatting operations
	https://gitlab.com/mpeg-i/video-decoding-interface/beamconf

[bookmark: _Toc93670728]Test vectors
[bookmark: _Toc93670729]Elementary streams constraints
In order to execute the normative functions, the VDI expects certain constraints on the elementary streams.
Test vectors will be collected during the development of the specification to illustrate the defined constraints.
[bookmark: _Toc93670730]Logistics
	Name
	Type
	Description
	Hosting

	Test Vectors
	Elementary streams
	Test vectors of elementary streams conforming the normative constraints defined in the different codec bindings
	https://gitlab.com/mpeg-i/video-decoding-interface/test-vectors

[bookmark: _Toc93670731]Standardisation process
Proponents submitting a contribution for a new operation or a new binding to a certain elementary stream codec needs to provide the implementation in the libBEAM library as well as the calling of this function in the BEAMOp command line.
As long as this is not provided, the contribution cannot be considered for adoption.
The study of this software will be used to assess the technical merits of the technical contribution in terms of application complexity. Without the implementation, this does not allow a correct evaluation by the experts and therefore prevents the group to decide.
When a software contribution is tentatively accepted at a meeting, the changes are merged into the ‘staging’ branch. Experts are invited to study the staging branch in preparation to the next to come AhG call on VDI. At the call, the staging branch is further merged to the master branch provided no objection were raised by experts during the review period between the end of the previous meeting and the AhG call.
The links to the staging branches are provided below:
	Name
	Staging branch

	libbeam
	https://gitlab.com/mpeg-i/video-decoding-interface/libbeam/-/tree/staging/

[bookmark: _Toc93670732]Summary logistics
	Name
	Language
	Description
	Hosting

	libbeam
	C++
	Reference libraries
	https://gitlab.com/mpeg-i/video-decoding-interface/libbeam

	BEAMOp
	C++
	Implements input formatting operations on elementary streams
	https://gitlab.com/mpeg-i/video-decoding-interface/beamop

	BEAMConf
	C++
	Validate conformance of input and output elementary streams passed on or output by the input formatting operations
	https://gitlab.com/mpeg-i/video-decoding-interface/beamconf

	Test Vectors
	Elementary streams
	Test vectors of elementary streams conforming the normative constraints defined in the different codec bindings
	https://gitlab.com/mpeg-i/video-decoding-interface/test-vectors

The project is hosted at: https://gitlab.com/mpeg-i/video-decoding-interface
For access to the project, please register an account on GitLab.com at https://gitlab.com/users/sign_in and collect the following information:
· GitLab.com username
· GitLab.com email address

Please then send an email containing this information to the VDI GitLab managers:
Emmanuel Thomas (thomase@xiaomi.com)

 - Collected information on OpenMAX implementations

 OpenMAX
As reminder, OpenMAX provides three layers of interfaces: application layer (AL), integration layer (IL) and development layer (DL). The VDI speciation refers to and integrates with the IL interface.
Specification of OpenMAX IL and the source file of the API can be found at:
https://github.com/KhronosGroup/OpenMAX-IL-Registry
The header files for each specification version of the API are provided here:
https://github.com/KhronosGroup/OpenMAX-IL-Registry/tree/master/api
The extension of the API are collected under each vendor code here:
https://github.com/KhronosGroup/OpenMAX-IL-Registry/tree/master/extensions
Note that only Khronos extensions are present at the moment, namely:
· OpenMAX_IL_1_1_2_Extension Deferred Commit.pdf
· OpenMAX_IL_1_1_2_Extension NAL Unit Packaging.pdf

 OpenMAX Integration Layer (IL) (source: Wikipedia)
The following paragraph is a quote from:
Wikipedia contributors. (2020, April 25). OpenMAX. In Wikipedia, The Free Encyclopedia. Retrieved 21:02, May 30, 2020, from https://en.wikipedia.org/w/index.php?title=OpenMAX&oldid=953004646
The OpenMAX IL API strives to give media components portability across an array of platforms using the C-language. In the OpenMAX IL, components represent individual blocks of functionality. Components can be sources, sinks, codecs, filters, splitters, mixers, or any other data operator. Depending on the implementation, a component could possibly represent a piece of hardware, a software codec, another processor, or a combination thereof.
The interface abstracts the hardware and software architecture in the system. The OpenMAX IL API allows the user to load, control, connect, and unload the individual components. This flexible core architecture allows the Integration Layer to easily implement almost any media use case and mesh with existing graph-based media frameworks. The key focus of the OpenMAX IL API is portability of media components.
The OpenMAX IL API design devotes particular attention to use case flexibility and optimized data transfers between components.
The OpenMAX IL API has been chosen as the base for the API to integrate Audio and Video codecs on Android, this results in most SoC vendors shipping a minimal implementation that only supports the subset required by Android. Applications do not use those OpenMAX IL components directly, but only through the Android MediaCodec API. Android's subset of OpenMAX IL with its extensions is now the de facto standard.
In 2011 the provisional version 1.2.0 was released.
[image:]
Figure 3 OpenMAX IL Architecture
 OpenMAX IL Open Source Implementations
Open source OpenMAX IL implementations are available,
· Bellagio, is maintained by STMicroelectronics
· Shared library with IL core and a reference OpenMAX component
· An implementation of a number of OpenMAX components
· Language: C
· LIM OpenMAX, an implementation that has both AL and IL.
· limoi-core: component loader and all OpenMAX IL APIs
· limoi-base: base implementation of OpenMAX IL
· limoi-components: implementations of OpemMAX components, including an FFmpeg component
· limoa: implementation of OpenMAX AL based in OpenMAX IL components
· Language: C
· omxil_core and omx_comp, maintained by Intel
· omxil_core: an OpenMAX IL implementation for Intel Vaapi, including a core library and a component base framework
· omx_comp: implementation of some OpenMAX components
· Language: C/C++
· Android StageFright, a partial implementation of IL that is the de facto standard
· Language: C/C++
· tizonia-openmax-il, part of the Tizonia Project. First open-source implementation of OpenMAX IL 1.2
· Tizonia is a command-line cloud music player for Linux with support for Spotify, Google Play Music, YouTube, etc.
· Maintained by Aratelia Limited
· Tizonia OpenMAX IL Core (libtizcore)
· implements the base OpenMAX IL Core infrastructure
· Tizonia OpenMAX IL API implementation (libtizonia)
· implements the base OpenMAX IL component infrastructure, which includes support for the standard OpenMAX IL state machine, port management, and buffer processing
· Tizonia OpenMAX Components (plugins)
· Skema: A Test execution framework to build and test arbitrary OpenMAX IL component graphs/pipelines using XML
· https://github.com/tizonia/tizonia-openmax-il/wiki/Skema
· Language: C/C++
[image: Android media architecture]
Figure 4 - Media architecture of StageFright Android
 Available implementations
	Library Name
	Website
	Code
	License
	Code last modified

	Bellagio
	http://omxil.sourceforge.net/
	link
	LGPL-2.1
	2012-07-25

	LIM OpenMAX
	http://limoa.sourceforge.net/
	link
	LGPL-2.1
	2012-09-25

	omxil_core
	https://github.com/intel/omxil_core
	link
	Apache-2.0
	2014-12-05

	Android StageFright
	https://source.android.com/devices/media
	link
	Apache-2.0
	2020-05-28

	The Tizonia Project
	https://tizonia.org/

	link
	LGPL-3
	2020-06-12

 - Implementation of a VDI-based decoding platform

The VDI specification provides two main normative aspects:
1. Extension of the OpenMAX IL interface
2. Operations for input formatting, time-locking and output formatting

Most of the implementations of OpenMAX IL listed above are to some extent dependent on hardware decoders. However, the VDI specification does bind with video coding standard that are not published yet, e.g., VVC. As a result, these open source implementations would need to be extended in such a way that new SW decoders (e.g. VTM decoder) would be added. In addition, the fact that these implementations assume a certain HW architecture adds a layer a complexity for extending these implementations since we rather operate on a pure SW basis.
Therefore, it could be advantageous, and overall of lower effort, to build a standalone VDI-based decoding platform that integrates the extended OpenMAX IL interface (item 1), implements the newly defined functions (item 2), and links with existing SW decoders for simulating the operation of the platform, e.g. VTM, HTM, ETM, …. This simulated platform could be arbitrarily configured to support a given set of video profiles, concurrent number of decoders, etc…

Decode
Simulated Decoding Engine (incl. new functions, e.g. beam)
ETM?
VTM
Decode
Decode
Config
Allocate
Open MAX IL (with VDI extension)
Sample App

image1.jpeg

image2.emf
Video Decoding Engine

Video

decoder

instance #1

Video

decoder

instance #j

…

MDS #n

MDS #1

MTS #1

Application configuration and capability

query

MTS #m

…

DS #1

Time locking

Output formatting

MTS #1

MTS #p

…

Output Video Decoding Interface

Input formatting

DS #q

… …

ES #1

Input Video Decoding Interface

ES #i

Microsoft_PowerPoint_Slide.sldx
Video Decoding Engine

Video decoder instance #1

Video decoder instance #j

…

MDS #n

MDS #1

MTS #1

Application configuration and capability query

MTS #m

…

DS #1

Time locking

Output formatting

MTS #1

MTS #p

…

Output Video Decoding Interface

Input formatting

DS #q

…

…

ES #1

Input Video Decoding Interface

ES #i

image3.png
libvdi (C++)

image4.emf

OpenMAX IL
͞The OpenMAX IL ;Integration LaǇerͿ API defines a standardiǌed
media component interface to enable developers and platform
providers to integrate and communicate with multimedia codecs
implemented in hardǁare or softǁare͟

Khronos Group - http://www.khronos.org/openmax/

Application

OpenMAX IL implementation core

Hardware/Software Codec Implementation

OpenMAX
component

OpenMAX
component

OpenMAX
component

9/36

image5.png
APPLICATION FRAMEWORK
Media Codecs android.media.»

BINDER IPC PROXIES NATIVE FRAMEWORK

frameworks/av/libmedia frameworks/av/

MediaPlayer Binder —— MEDIA PLAYER SERVICE

frameworks/av/media/libmediaplayerservice

OMX INTEGRATION
—» MediaPlayerService.cpp

OMX IL COMPONENT

Hardware Codec STAGEFRIGHT ENGINE
Implementation

frameworks/av/libstagefright

libstagefrighthw.so =~ OMX Core

